
Professional development tools
for RISC-V

Ryan Sheng, ryan.sheng@iar.com, 021-63758658
IAR Systems (China)
2019.12.20

mailto:ryan.sheng@iar.com

IAR Systems

IAR Embedded Workbench

for RISC-V

Complete Arm 32-bit support

Complete Renesas MCU support
13,000+

SUPPORTED

DEVICES

150,000

USERS

WORLDWIDE

Renesas ABI

compliant

Fully integrated runtime
and static analysis tools

C-RUN C-STAT

• World-leading embedded development tools vendor

• Established in 1983

• Headquartered in Uppsala, Sweden

• 200 employees, 11 offices in EMEA / APAC / US

• Listed on Stockholm/NASDAQ-OMX

Total quality • Total safety • Total security

Total tools

Our customers build the technology for a new
world. We supply the tools to make it happen.
One toolbox, one view, one uninterrupted
workflow. As simple as that.

IAR Embedded Workbench
C/C++ Compiler and Debugger IDE

Most widely used embedded software development tools

User-friendly IDE features and broad ecosystem integration

Industry leading optimization for code size and speed

ISO/ANSI compliance

with C18 and C++17

Comprehensive graphical

debugger interface

Integrated code analysis

add-ons

Functional safety certified

Global support & service

Cortex-M0

Cortex-M0+

Cortex-M1

Cortex-M3

Cortex-M4

Cortex-M7

Cortex-M23

Cortex-M33

Cortex-R4

Cortex-R5

Cortex-R52

Cortex-R7

Cortex-R8

Cortex-A5

Cortex-A7

Cortex-A8

Cortex-A9

Cortex-A15

ARM11

ARM9

ARM7

SecurCore

8051

MSP430

AVR

AVR32

RX

RL78

RH850

78K

SuperH

V850

R32C

M32C

M16C

R8C

H8

STM8

ColdFire

HCS12

S08

MAXQ

CR16C

SAM8

RISC-V

Support for 13,000+ devices
Different architecture, One solution
All available 8-, 16- and 32-bit MCUs

Device support for RISC-V

RV32I
Base Integer Instruction Set

RV32E
Base Integer Instruction Set

(embedded, 16 registers)

Supported extensions
M integer mul & div

A atomic

F single precision float

D double precision float

C compressed

Supported IP vendors
Andes

CloudBEAR

Microchip

SiFive

Syntacore

……

Compilation system

Object File

Object File

Object File

C Runtime

Library

Other Lib

OS

Compilation System

Executable

Compiler

Linker

C Source

C Source

C Source

Hardware

Object Code

Compiler optimizations

C Source

Parser

Intermediate

Code

High-Level

Optimizer

Code

Generator

Target

Code

Low-Level

Optimizer

Assembler

Compiler

c.mv a3, sp

c.li a1, 1

lui a0, 0x80002

=

–

15y

x

x = y - 15;
Function

inlining

Dead code

elimination

Loop

unrolling

Peephole

Crosscall

Scheduling

01001000111001101001

Linker

Link-time

optimizations

Controlling optimizations

Language standards
 ISO/IEC 14882:2015

(C++14, C++17)

 ISO/IEC 9899:2018 (C18)

 ANSI X3.159-1989 (C89)

 IEEE 754 standard for

floating-point arithmetic

Option to

maximize

speed with

no size

constraints

The linker can

remove unused

code

Multiple

optimization

levels for code

size and

execution

speed

Balance between size

and speed by setting

different optimizations

for different parts of the

code

Major features of the

optimizer can be

controlled individually

Multi-file compilation allows

the optimizer to operate on

a larger set of code

#pragma optimize=high

unsigned int GetFib(int n)

{

if ((n > 0) && (n <= MAX_FIB))

{

return (Fib[n-1]);

}

else

{

return 0;

}

}

Controlling optimizations

Optimization

Common sub-expressions Speed ↑ Size ↓

Loop unrolling Speed ↑ Size ↑

Function inlining Speed ↑ Size ↑

Code motion Speed ↑ Size →

Dead code elimination Speed → Size ↓

Static clustering Speed ↑ Size ↓

Instruction scheduling Speed ↑ Size →

Peephole Speed ↑ Size ↓

Cross call Speed ↓ Size ↓

Effect

Speed, size or both?

• Size
– Compared to more complex instruction sets,

RISC-V have challenges especially when it

comes to code size

– Arithmetic with higher resolution than the

natural data size yields larger code

– Absence of carry flags and instructions to

save and restore multiple registers

• Speed
– When it comes to speed, RISC-V is competitive

– More speed optimizations in future releases

Our initial target will be reducing code size for small

embedded systems. Our main focus has always been

to supply the best code size and speed on the market.

Challenges on optimization

GCC attributes

• In the extended language mode, IAR C/C++ compiler supports

a selection of commonly used GCC-style attributes

• Use the __attribute__ ((attribute-list)) syntax for these

attributes

• The following attributes are supported in part or in whole

alias aligned always_inline constructor

deprecated noinline noreturn packed

pcs section target
transparent_

union

unused used volatile weak

Custom instructions

• The .insn directive
generates custom
instructions which are
not directly supported
by the assembler

• The .insn directive
generates instructions
on all RISC-V
instruction formats

.insn directives

.insn r op7, f3, f7, rd, rs1, rs2

.insn r op7, f3, f7, rd, rs1, rs2, rs3

.insn r4 op7, f3, f2, rd, rs1, rs2, rs3

.insn i op7, f3, rd, rs1, expr

.insn i op7, f3, rd, rs1, expr (rs1)

.insn s op7, f3, rd, rs1, expr (rs1)

.insn sb op7, f3, rd, rs1, expr

.insn sb op7, f3, rd, expr(rs1)

.insn b op7, f3, rd, rs1, expr

.insn u op7, f3, rd, expr

.insn uj op2, rd, expr

.insn cr op2, f4, rd, rs1

.insn ci op2, f2, rd, expr

.insn ciw op2, f3, rd’, expr

.insn ca op2, f6, f2, rd’, rs2’

.insn cb op2, f3, rs1’, expr

.insn cj op2, f3, expr

.insn cs op2, f3, rs1’, rs2’, expr

op2, op7
unsigned immediate
2 or 7-bit opcode

fN
unsigned immediate for

function code
2-7 bits wide

rd, rsN
register field
integer (x0-x31) or FP

(f0-f31)

rd’, rsN’
compact instruction

register field
integer (x8-x15) or FP

(f8-f15)

expr
immediate expression

* Please refer to the RISC-V ISA specification

sections 2.3 and 12.2 for details on bit-layout

Custom instructions: Example

Intrinsic-like function example

long __insn_example(int lhs, int rhs) {
long res;
/* Generates AND r,r,r */
asm (".insn r 0x33, 0x7, 0x0, %0, %1, %2" \

: "=r" (res) \
: "r" (lhs), "r" (rhs));

return res;
}

Intrinsic-like macro example

/* Generates AND r,r,r */
#define __insn_example(lhs, rhs) ({ \

int __lhs = (lhs), __rhs = (rhs), __res; \
asm (".insn r 0x33, 0x7, 0x0, %0, %1, %2" \

: "=r" (__res) \
: "r" (__lhs), "r" (__rhs)); \

__res; \
})

• The .insn directive
can be used to inline
assembly code in
programs written in
C and C++

• Built-in constants are
available when
generating a custom
instruction

CWE (Common Weakness Enumeration): http://cwe.mitre.org

CERT (Computer Emergency Response Team): http://www.cert.org

• Advanced C/C++ code analysis

• Fully integrated within

IAR Embedded Workbench

• Check the compliance with

MISRA C:2004, MISRA

C++:2008 and MISRA C:2012

• 250+ checks mapping to

hundreds of issues covered by

CWE and CERT C/C++

• Intuitive and easy-to-use

settings

• Flexible rules selection

• Extensive and detailed

documentation

C-STAT: static code analysis

http://cwe.mitre.org/
http://www.cert.org/

RISC-V debugging

• IAR supports the latest complete RISC-V debug spec, currently v0.13
– Any additional updates will continuously be supported

• Automated discovery of implemented debug features in a MCU or SoC
– Implemented debug features like h/w breakpoints, supported extensions etc.

are automatically read on connection

• Interrupt and exception catching
– Distinguish between different priority levels and exception types

• Set different types of breakpoints
– Code, data, log, trace start and stop, etc.

• Single step on both C/C++ and assembler level

• Full low-level access to all registers, memories and other resources
on the MCU or SoC

• Script/macro execution capabilities

Debug & Trace probes

I-jet I-jet Trace (4-bit model) I-jet Trace(16-bit model)

JTAG/SWD speed 48 MHz 100 MHz 100 MHz

Download speed (RAM) 1.89 MByte/s 3.73 MByte/s 3.73 MByte/s

SWO max. bandwidth ~30 Mbps ~60 Mbps ~60 Mbps

Available trace memory - 64M or 256M bytes 256M or 1G bytes

Trace max. bandwidth - 1.2 Gbps 11.2 Gbps

Max streaming speed 48 MByte/s ~380 MByte/s ~380 MByte/s

Power sampling resolution ~160 µA ~160 µA ~160 µA

Power sampling rate 200 ksps 200 ksps 200 ksps

C-SPY debugger overview

C-SPY debugger implementation

Project & File

Registers Semihosted Terminal I/O

Source &

disassembly

level

debugging

Stack usage

Variables monitoring

Expressions monitoring

Code & data breakpoints

Full development environment

USB

FPGA Kit

编译/链接/下载/调试

I-jet
JTAG

RISC-V

Core

Trace on RISC-V (coming …)

• What is Trace ?
– In contrast to traditional debugging, trace is non-intrusively observing your application

– Capture the full PC flow

– Go back in time and see how you arrived at the current point

– Quickly isolate exceptions and hard faults

– Find bugs that are rare and dependent on the order-of-execution

– Performance and coverage monitoring, e.g. find where your application is spending its
time, isolate the dead code, show test deficiencies, etc.

• RISC-V trace specifics
– Specifications of standard RISC-V trace are still under development

– Processor Trace TG defines trace encoder packets and the coreencoder interface

– More work is needed to make all aspects of trace standard (e.g. control & export)

– Goal is to get on par with what is already existing on more mature architectures

Trace on RISC-V (coming …)

Instruction

Trace
Timeline

Code

Coverage

Instruction

Coverage

Summary

Meet your demand of quality & time-to-market

 Easy code reuse and widest customers base from
IAR Embedded Workbench

 Fit the needs of both memory size and necessary
performance by the outstanding C/C++ compiler

 Improve the code quality and find potential issues
earlier by the integrated C-STAT analysis

 Identify low level bugs and provide graphical visibility
to all SoC resource by the powerful debugger

Thanks for your attention !

www.iar.com/riscv

