

s.

品

Hercules" MCU

DRM

CAN

8

Battery Management Systems, EPS, Braking Systems, VCU in EV/HEV Application

Why Functional Safety?

BP's Deepwater Horizon oil well explosion last year killed 11 workers and caused the biggest offshore spill in US history. Photograph: Reuters

Why was there an explosion and fire on Deepwater Horizon oil rig?

According to BP's September 2010 report, the accident started with a "well integrity failure". This was followed by a loss of control of the pressure of the fluid in the well. The "blowout preventer", a device which should automatically seal the well in the event of such a loss of control, failed to engage. Hydrocarbons shot up the well at an uncontrollable rate and ignited, causing a series of explosions on the rig.

How many people were killed?

Eleven, from Texas, Louisiana and Mississippi.

Source: Guardian Newspaper

Toyota to Pay \$1.2B for Hiding Deadly 'Unintended Acceleration'

Y BRIAN ROSS, JOSEPH RHEE, ANGELA M. HLL, MEGAN CHUCHMACH ING AARON KATERSKY + MICRO R. 2014 F Share with Facebook

Toyota Motor Corp. vehicles at parked ahend of shoreen outside the Central Motor Corp. plant in China, Myegi Prefecture, Japan, Merch 7, 201

Source: ABC News

Functional Safety goals:

- Perform intended functions
- When fail, fail predictably

ISO 26262 – Functional Safety of Road Vehicles

INTERNATIONAL STANDARD	ISO 26262-1	
	First edition 2011-11-15	
Road vehicles — Functiona	al safety —	
Part 1: Vocabulary		
Véhicules routiers — Sécurité fonctionnelle — Partie 1: Vocabulaire		
ISO	Reference number 150 26262-1:2011(E)	
	© ISO 2011	

- Automotive specific interpretation of IEC 61508 but replaces it rather than extending it.
- Aligns automotive life cycle and supply hierarchy.
- Separates component design from system design. Most complex components must comply to standard.
- TI participates in US and international working group as well as leading Semiconductor subgroup:
 - ISO/TC 022/SC 03/WG16
 - ISO/NP PAS 19451

Hercules[™] TMS570 safety MCUs for automotive and transportation motor control

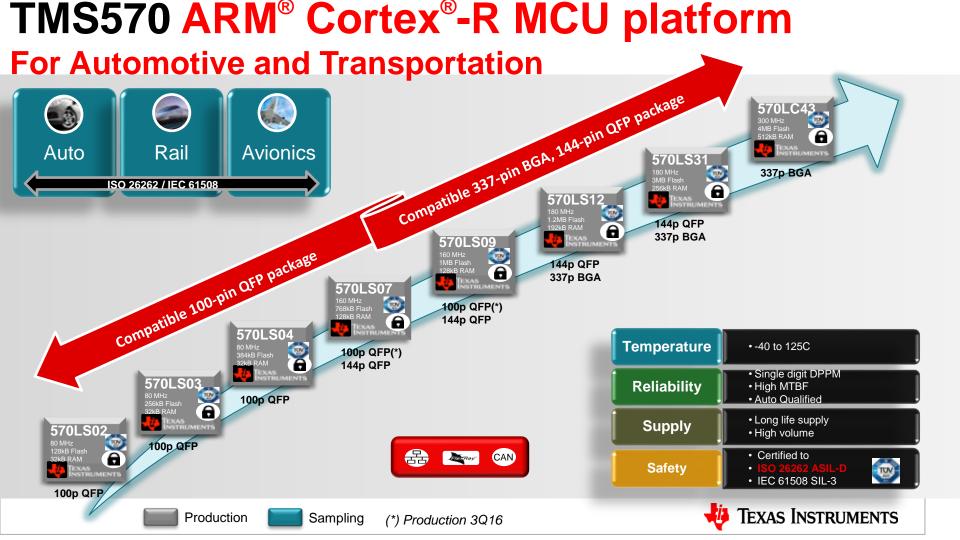
Extending Hercules TMS570 safety MCU platform

- From 120 MIPS to 500 DMIPs lockstep ARM Cortex-R core
- From 128KB to 4 MB flash
- $\circ~$ Cortex-R4 and Cortex-R5 options $~\circ~$
- Fixed- and floating-point options

Proven safety architecture

- o ISO26262, IEC61508
- Lockstep CPUs
- $\circ~$ CPU and RAM built-in self test $\circ~$
- Flash & RAM ECC
- Clock, Voltage monitoring

Expanded motor control support


- Enhanced PWMs, capture and Quadrature Encoder Interface
- New MotorWare[™]-enabled Kits
- New DSP Library

SafeTI™ Design Packages

Docs, Tools, Software

- Complementary, safetyenabled Components
- Safety Development Processes

TMS570LC4x Block Diagram

Lockstep ARM Cortex-R5F Cached Floating Point MCU

Features

Performance / Memory

- · Up to 300 MHz ARM Cortex-R5F w/ Floating Point
- Up to 4MB Flash and 512KB Data SRAM w/ECC
- 32KB Instruction & 32KB Data Cache w/ECC
- Dedicated 128KB Data Flash (EEPROM Emulation)
- 16 Channel DMA

Safety

- Dual CPUs in Lockstep, CPU Logic Built in Self Test (LBIST)
- Up to 16 CPU MPU regions, Flash & RAM w/ ECC (w/ bus protection)
- Memory Built-in Self Test (PBIST),Cyclic redundancy checker module (CRC)

IEC

Select peripheral RAMs protected by Parity/ECC

Communication Networks

- 10/100 MAC ,4 CAN Interfaces
- 5 Multi-Buffered SPI,4 UART (2 LIN capable), 2 I2C

Enhanced I/O Control

- 2x Timer Coprocessor (N2HET) w/DMA
 - Up to 64 total channels (2x32)
 - Pins can be used as Hi-Res PWM or Input Capture
- Motor Control Timers
 - ePWM, eCAP, eQEP
- 2 x12-bit Multi-Buffered ADC
 - Up to 48 total input channels
 - Calibration and Self Test

• Up to 145 GPIO pins (16 dedicated)

MS570LC4x	Temperature	-40°C - 125°C	AEC Q100
ARM Cortex™-R5F	Up to 4MB Flash (w/ ECC		Ver & Clocking OSC/PLL CLKMON
ARM Cortex-R5F Up to 300 MHz Memory Protection Unit	Up to 512KB SRAM (w/ EC 128KB EEPROM (en	C) Saf	VMON ety & System CPU BIST SRAM BIST
Lockstep CPU Fault Detection	JTAG ETM, RTP, DMM		CRC OS Timers Vindowed Watchdog
	DMA w/ Memory Protec I System Bus and Vectored		
Analog 12-bit MibADC1 – 24ch 12-bit MibADC2 – 24ch Temperature Sensor Memory Interface SDRAM/ASYNC EMIF	Communicati 10/100 EMAC 4x CAN 5x Multi-Buffer SI 4x UART (2 LIN cap 2x I2C	P1	rol Peripherals gh End Timer (N2HET) ePWM (14ch) eCAP (6x) eQEP (2x) put / Output GIO/INT (16)
	37p BGA 16x16mm)	 Hig ISC App Aut 	eted Applicatic h End IEC61508 a 026262 Safety blications omotive, Rail, ospace (COTS) Of
			ospace (COTS), (STRUMENTS

TMS570LS31x/21x Block Diagram

IEC

ISO

FlexRay

CAN

Lockstep ARM Cortex-R4F w/ Floating Point

Features

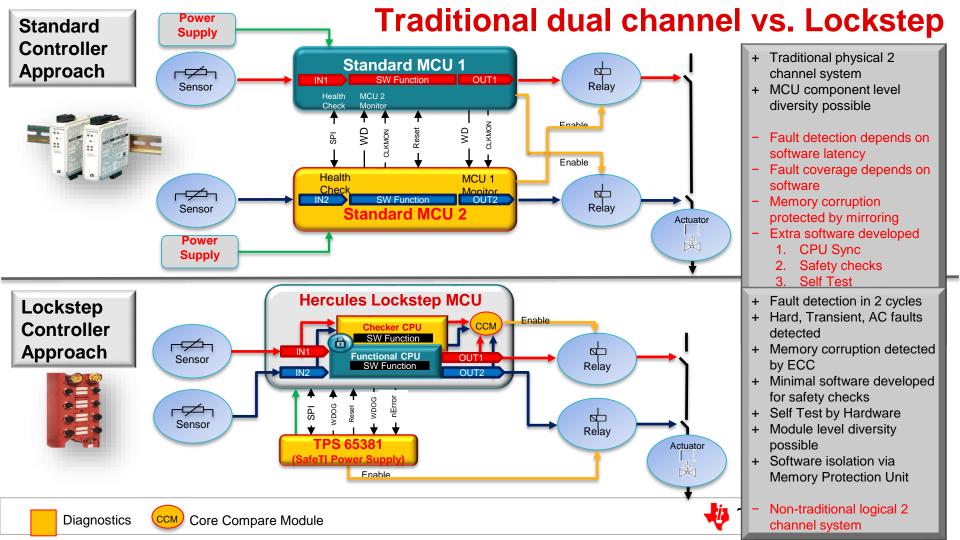
Performance / Memory

- Up to 180 MHz ARM Cortex-R4F w/ Floating Point
- Up to 3MB Flash and 256KB Data SRAM
- Dedicated 64KB Data Flash (EEPROM Emulation)
- 16 Channel DMA

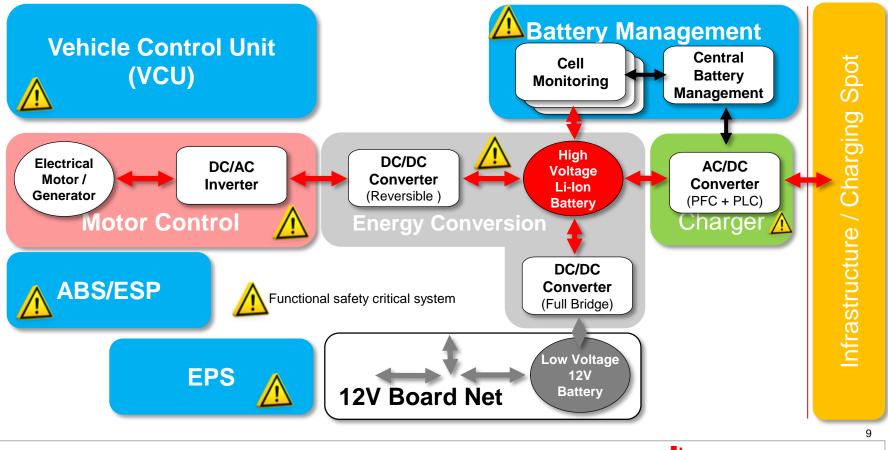
Safety

- Dual CPUs in Lockstep
- CPU Logic Built in Self Test (LBIST)
- Up to 12 CPU MPU regions
- Flash & RAM w/ ECC (w/ bus protection)
- Memory Built-in Self Test (PBIST)
- Cyclic redundancy checker module (CRC)
- Select peripheral RAMs protected by Parity

Communication Networks


- 10/100 MAC ,FlexRay w/DMA,3 CAN Interfaces
- 5 SPI (3 Multi-Buffered),2 UART (1 LIN capable), 1 I2C

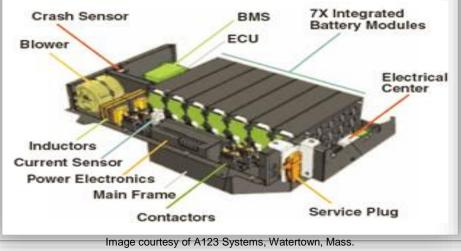
Enhanced I/O Control


- 2x Timer Coprocessor (N2HET) w/DMA
 - Up to 44 pins plus 6 monitor channels
 - Pins can be used as Hi-Res PWM or Input Capture
- 2 x12-bit Multi-Buffered ADC
 - 24 total input channels (16 shared)
 - Calibration and Self Test
- Up to 120 GPIO pins (16 dedicated)

MS570LS31x	Temperature -4	0°C - 125°C AEC Q100
ARM	Memory	Power & Clocking
Cortex™-R4F	Up to 3MB	OSC/PLL
ARM	Flash (w/ ECC)	CLKMON VMON
Cortex-R4F	Up to 256KB	
Up to 180 MHz	SRAM (w/ ECC)	Safety & System
Memory Protection Unit	64KB EEPROM (emulated)	CPU BIST SRAM BIST
	Debug	CRC
Lockstep CPU Fault Detection	JTAG	OS Timers
	ETM, RTP, DMM	Windowed Watchdog
12-bit MibADC1 – 24ch (16 shared channels)	10/100 EMAC 2ch FlexRay	High End Timer 1 (N2HET1 = 32ch)
	2ch ElexBay	
12-bit MibADC2 – 16ch	,	
(16 shared channels)	3x CAN (64mb)	High End Timer 2 (N2HET2 = 14ch)
	,	High End Timer 2

Texas Instruments

Electric Vehicle – Architecture Overview



Battery Management System (BMS)

What is the

Battery Management System?

- In an electric vehicle (EV) or hybrid electric vehicle, the battery management system monitors and controls the high-voltage battery stack. This includes:
 - Measuring the cells' charge, voltage, and health
 - · Measuring the temperature of the cells
 - Controlling the current among cells to avoid overor under-charging (cell balancing)

What does this EE consist of?

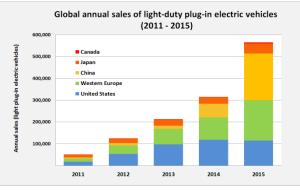
- Passive cell balancing
 - The technique places a bleed resistor across a cell when its state of charge exceeds that of its neighbors. This extends the useful lifetime (number of cycles) of the battery.
 - Simple but has resistive losses
- Active cell balancing
 - Shuttles energy among individual cells using FET matrix to direct energy from higher-charged cells to lower-charged cells
 - High efficiency, but requires more circuitry

Thermal management

- Monitors temperature and controls heat/cooling for battery pack
- Maintains battery pack within temperature range for best operation of cell chemistry

Disconnect unit

- · Disconnects high voltage from the rest of the car
- Disconnects during servicing or in case of crash
- Fuel cell management
 - Monitors and controls the operation of fuel cell unit in fuel cell vehicle
 - Controls high voltage generated by chemical reaction within the fuel cell



BMS: Functional Safety is Required

- Primary concern with Lithium Ion Batteries is potential for thermal runaway caused by internal short in a cell or due to manufacturing flaw or an accident.
- BMS systems monitor the cell voltages and temperatures and alerts the vehicle control unit of any abnormalities.
- Car manufactures require BMS development be done according to the ISO 26262 functional safety standard up to ASIL C/D level.
- Battery Management Systems are expected to continue to grow!!
- ISO 26262 is automotive functional safety standard. Hercules MCUs are certified to ISO 26262 ASIL-/D!!

Source - http://energy.gov/eere/vehicles/fact-918-march-28-2016-global-plug-light-vehicle-sales-increased adjout-80-2015

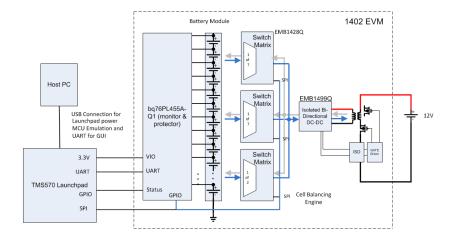
TMS570 Active Cell-Balancing Battery-Management: TIDM-TMS570 TIDESigns

Features

- The diagnostic features of TMS570LS0432 microcontroller (MCU) are enabled to monitor and report TMS570LS0432 status during run time.
- The TMS570LS0432 MCU configures BQ76PL455A-Q1 for monitoring cell voltages and checking BQ76PL455A-Q1 status during run time.
- The TMS570LS0432 MCU analyzes the data from all battery cells and generates active cell balancing command.
- The TMS570LS0432 MCU commands EMB1428Q for cell balancing and monitors EMB1428 and EMB1499 status during run time.

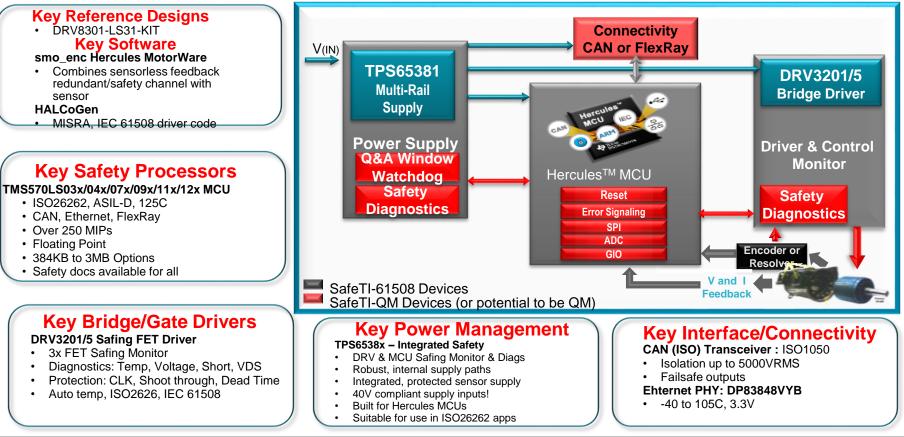
Benefits

- Demonstrate TMS570LS0432 (an ISO 26262 capable MCU) supporting active cell balancing between one cell in a 16 cell battery module and a 12V supply for emulation of HEV/EV application.
- Demonstrate building the system example using the off shelf TI evaluation kits: TMSLS0432 Launchpad and EM1402 BMS EVM.

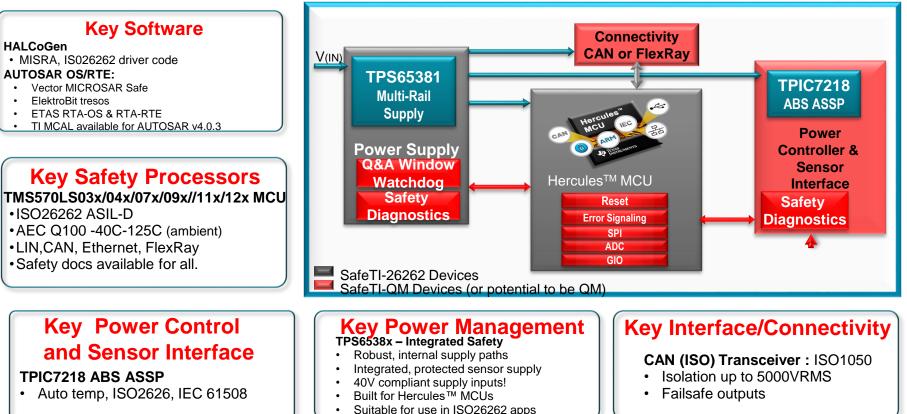

Target Applications

- Electric and Hybrid Electric Vehicles (EVs, HEVs, PHEVs, and mild hybrids)
- Energy Storage (ESS)
- Uninterruptible Power Supplies (UPSs)
- E-Bikes and E-Scooters

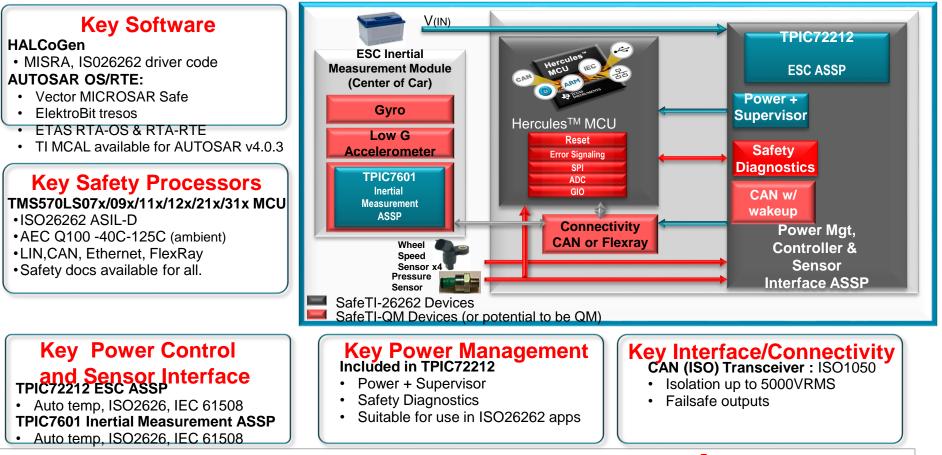
Tools & Resources



- <u>TIDM-TMS570BMS TI Design Folder</u>
 - User Guide
 - Relevant Design Files
- Device Datasheets:
 - TMS570LS0432
 - BQ76PL455A-Q1
 - <u>EMB1428Q</u>
 - <u>EMB1499Q</u>



Safety Motor Control Block Diagram

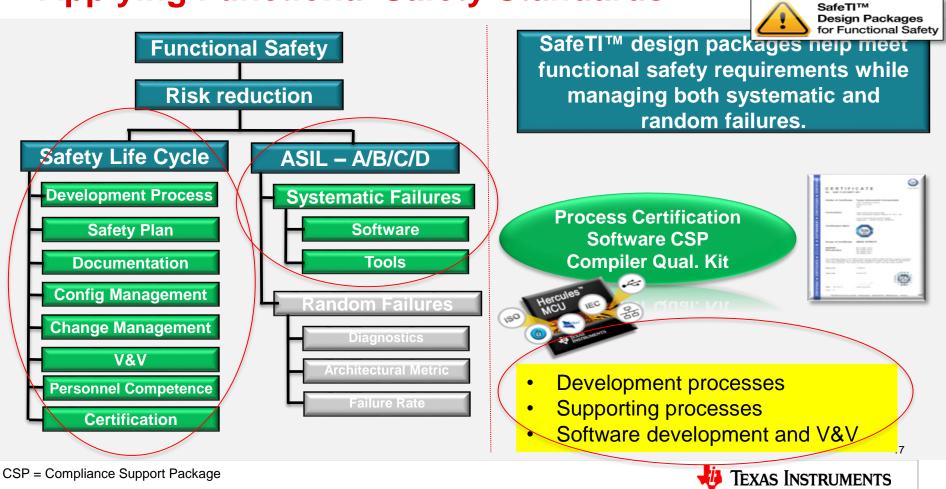

Texas Instruments

Anti-Lock Braking Block Diagram

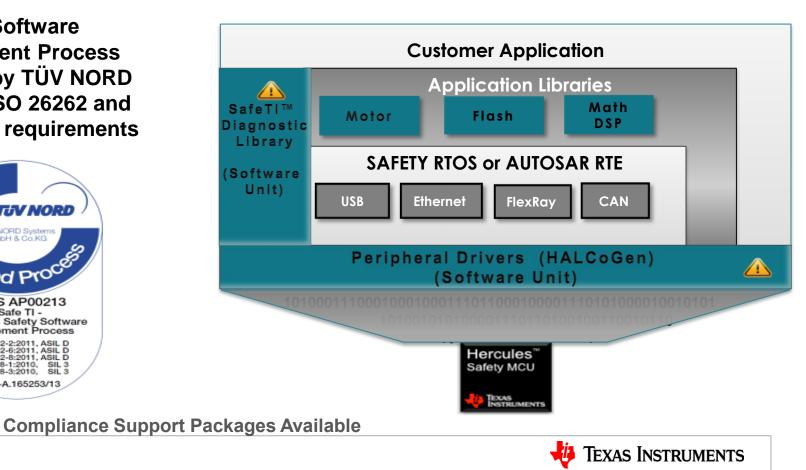
Texas Instruments

Electronic Stability Control Block Diagram

TEXAS INSTRUMENTS

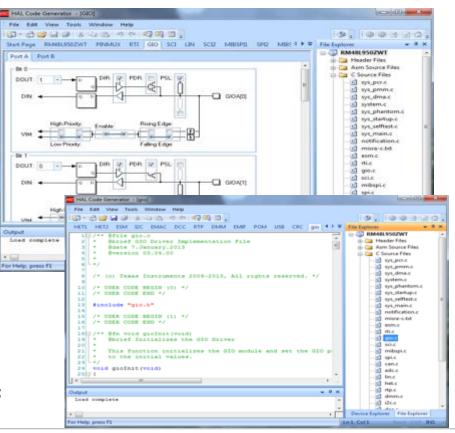

Hercules Product & Process Certification

- First devices certified by Exida for IEC 61508 SIL-3 use in 2011
- TÜV-SÜD certified the SafeTI Hardware functional safety development process in 2013 for:
 - IEC 61508 SIL-3
 - ISO 26262 ASIL-D
- Hercules MCUs certified for IEC 61508 SIL-3, ISO 26262 ASIL-D:
 - Hercules MCU Safety Architecture
 - Device (RM42, RM46x, RM48x)
 - Device (TMS570LS03x/04x/11x/12x/21x/31x)
- TÜV-Nord certified the SafeTI Software functional safety development process in 2015 for
 - IEC 61508 SIL-3
 - ISO 26262 ASIL-D
- TÜV-SÜD concept assessment in 2014 for ISO 13849:
 - Lockstep MCU + Safety Companion Power Supply


Applying Functional Safety Standards

SafeTI Software Framework

SafeTI[™] Software **Development Process** Certified by TÜV NORD meeting ISO 26262 and **IEC 61508 requirements**


HALCoGen - Hardware Abstraction Layer Code Generator

HALCoGen Features

- User Input on High Abstraction Level
- Generates C Source Code for Hercules™ MCU
 - Peripheral Drivers
 - Device Initialization
- Native support for CCS, ARM, IAR and GHS IDEs
- Interactive Help System with example code

SafeTI™ HALCoGen Compliance Support Package: <u>www.ti.com/tool/safeti-halcogen-csp</u>

Hercules SafeTI[™] Diagnostic Library

Provides simple interfaces and a framework for

- Initializing and Enabling Safety diagnostics/Features prescribed by the Hercules Safety Manual.
- Fault injection to allow testing of application fault handling

Lockstep compare

registers

Boot time execution of LBIST STC

Periodic execution of LBIST STC

Use of status shadow registers

Software readback of written configuration

Software readback of written configuration

Periodic software readback of static configuration

Safety Feature or Diagnostic

- Error Signaling Module (ESM) handler callback routine.
- Profiling for measuring time spent in diagnostic test/fault handling

Unique Identifier

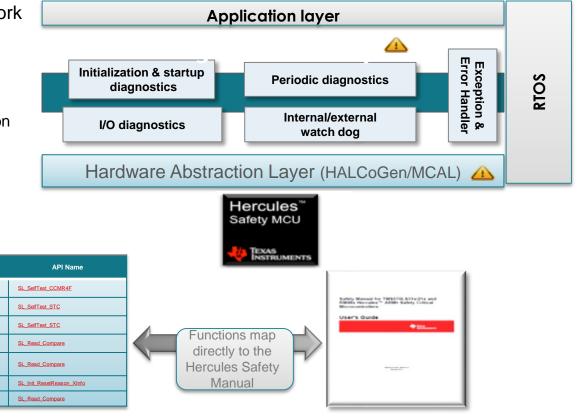
CPU1

CPU2A

CPU2B

CPU7

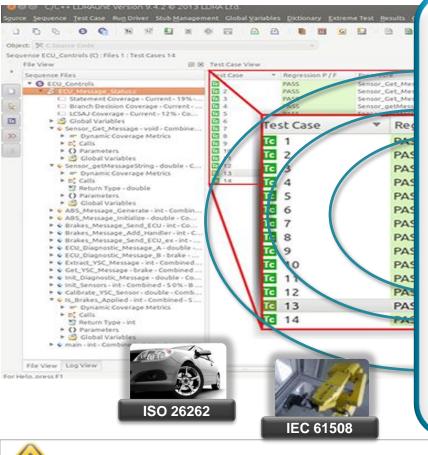
ESM1


ESM3

ESM4

Device Partition

Cortex-R4F CPU


Error Signaling

Texas Instruments

SafeTI™ Compliance Support Package (CSP)

- Assists customers using Hercules software components to comply to functional safety standards
- SafeTI software development process certified by TUV NORD to IEC 61508 and ISO 26262
- CSPs Include:
 - Documentation:
 - Safety Requirements
 - Safety Manual
 - Static and Dynamic test results
 - Code coverage reports
 - MISRA-C results
 - Traceability report
 - Unit Test Capability:
 - TI unit level test cases

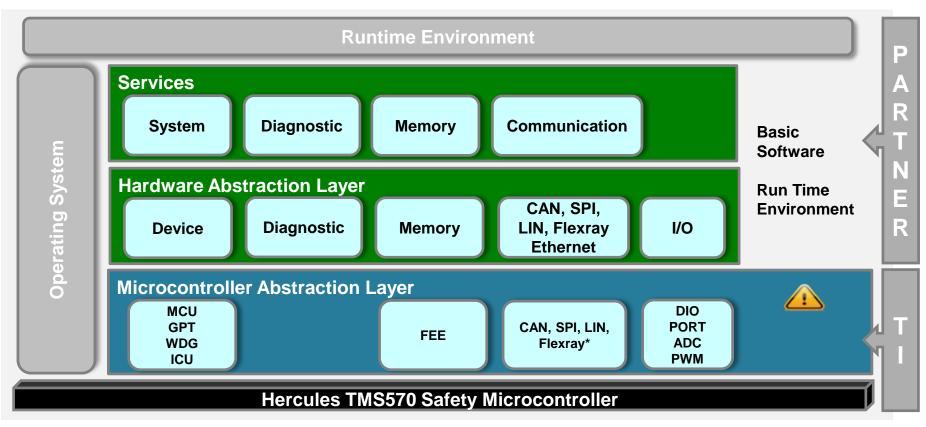
LDR

- Test Automation Unit (TAU) based on LDRAunit[®]
- Available NOW! for HALCoGen and SafeTI Hercules Diagnostic Library
 - www.ti.com/tool/safeti-halcogen-csp
 - www.ti.com/tool/safeti-hercules-diag-lib-csp
 - Customers can download the demo or submit request for production version

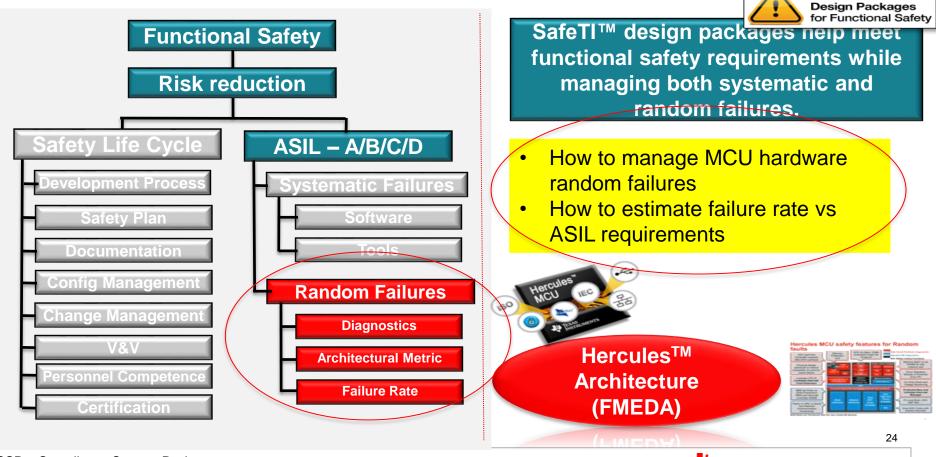
SafeTI Compliance Support Packages available now!

SafeTI[™] Compiler Qualification Kit

Assists in qualifying TI C/C++ Compiler s

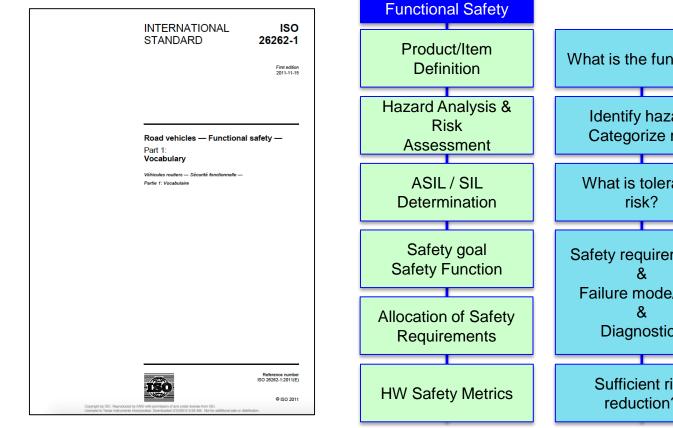

to functional safety standards

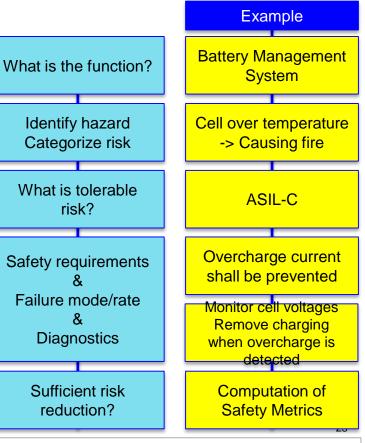
- Flexible integration into development processes due to the model-based qualification method
- Assessed by TÜV Nord to comply with both IEC 61508 and ISO 26262
- Includes:
 - Qualification Support Tool (model-based)
 - Process specific documentation:
 - Tool Classification Report
 - Tool Qualification Plan
 - Tool Qualification Report
 - Tool Safety Manual
 - Solid Sands <u>SuperTest™</u> qualification suite
 - TI compiler validation test cases
 - Test Automation Unit (TAU)
 - 24hrs of <u>Validas</u> consulting services
 - TÜV Nord assessment report


Hercules TMS570 AUTOSAR v4.0 rev3 Support

*From partner

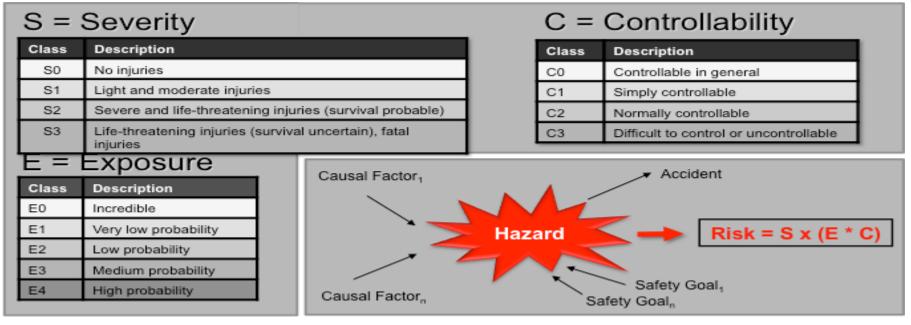
Applying Functional Safety Standards




CSP = Compliance Support Package

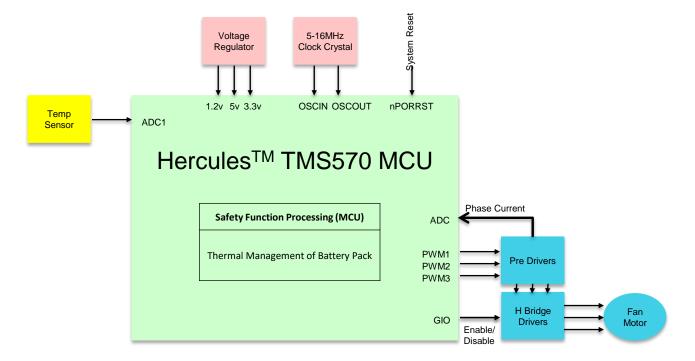
SafeTI™

ISO 26262 - Management of Random Failures



Determining ISO 26262 ASIL Level

- To determine the ASIL level of a system a Risk Assessment must be performed for all Hazards identified.
- Risk is comprised if three components: Severity, Exposure & Controllability

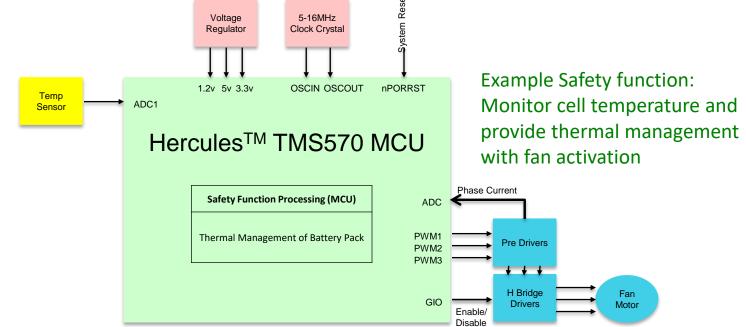

ASIL Determination Table

Risk = Severity x (Exposure * Controllability)

				,
			Controllability	
Severity	Exposure	C1 Simply	C2 Normal	C3 Difficult
	E1 Very Low	QM	QM	QM
S1	E2 Overcharge	r <mark>e</mark> QM		
Light and moderate injuries	E3 Severity: Life threatening injury (S2) Exposure: City road or highway high probability (E4)			ASIL A
		: difficult for driver to a		ASIL B
Severe and iffe threatening injuries (survival probable)	E1 Very Low	QM	QM	QM
	E2 Low	QM	QM	ASIL A
	E3 Medium	QM	ASILA	ASIL B
	E4 High	ASILA	ASIL B 🤇	ASIL C
S3 Life-threatening injuries (survival uncertain), fatal injuries	E1 Very Low	QM	QM	ASIL A
	E2 Low	QM	ASILA	ASIL B
	E3 Medium	ASIL A	ASIL B	ASIL C
	E4 High	ASIL B	ASIL C	ASIL D 27
				èxas Instruments

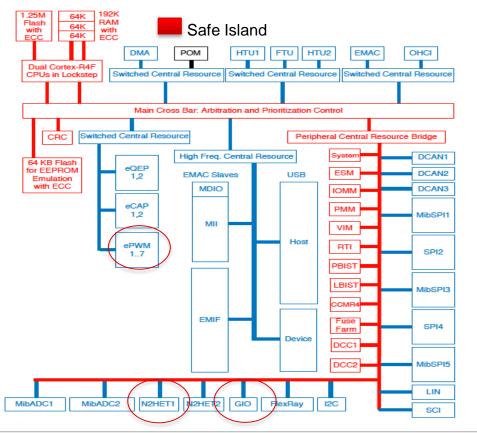
Application Example

BMS Function: Manage battery cell charging status and thermal management of battery pack


Simplified diagram for illustration purpose only

Application Example

Hazard: Cell over temperature-> Risk: Fire-> ASIL-C


Safety Goal: Prevent cell over temperature with thermal management

Simplified diagram for illustration purpose only

MCU Safety Critical Elements per Safety Function

- Safety Critical Elements are elements within MCU the implement the safety function
- Diagnostics are necessary to detect safety related failures
- Sufficient diagnostics coverage (DC) is needed to meet required IEC 26262 HW metrics per ASIL level
- In this example, safety critical elements are: Safe Island, ADC, PWM, GIO

Managing Hardware Random Failures

MCL

- Millions of transistors, metal lines, resistors, capacitors..
- Each component could fail (permanent and/or transient)
- A component failure could lead to a system failure

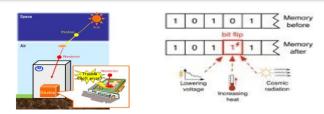
- Failure rate is measured in Failure In Time (FIT)
- 1 FIT is 1 fail in 10⁹ operating hours
- Assuming 1 million cars on the road with 4 driving hours per day per car on average:
 - 100 FIT => ~150 failures per year

ASIL	SPFM	PMHF (FIT)
ASIL B	>90%	<100
ASIL C	>97%	<100
ASIL D	>99%	<10

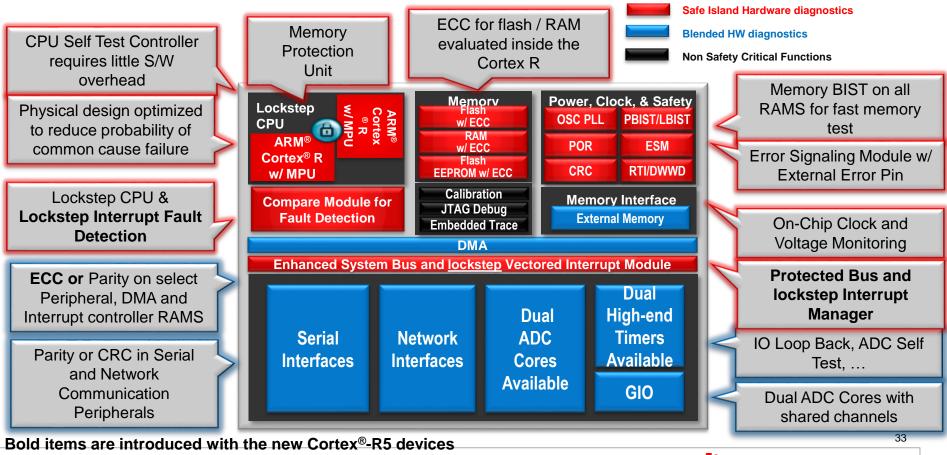
What is the total system failure rate?

Unacceptable risk

Apply diagnostic until total system failure rate is below functional safety requirement


MCU Failure Mode and Failure Rate

Permanent random failures:


- Tox integrity, Short, Open, Stuck At, Drift
- Source of permanent component failure rate data:
 - MILHDBK 217F
 - SN29500
 - IEC/TR 62380
 - Supplier reliability data
 - ...
- TI uses IEC/TR 62380 where # of transistors, # of memory bits, temperature and package effect can be modeled.
- Failure rate is commonly expressed in FIT (Failure In Time)
 - 1 FIT = 1 failure in 1E9 hours.

- <u>Transient random failures:</u>
 - Cosmic Rays
- Failure rate data source is TI experiments in Los Alamos lab and TI lab

Hercules[™] MCU safety diagnostic features

🔱 Texas Instruments

How to implement Applicable Diagnostics?

Hercules[™] Safety Manual

Safety Manual for TMS570LS12x and 11x
Hercules [™] ARM®-Based Safety Critical
Microcontrollers

Literature Number: SP%U360A October 2012 - Revised December 2014

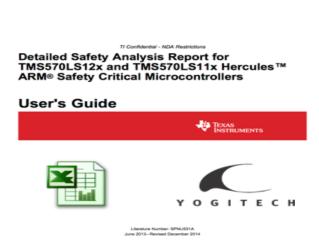
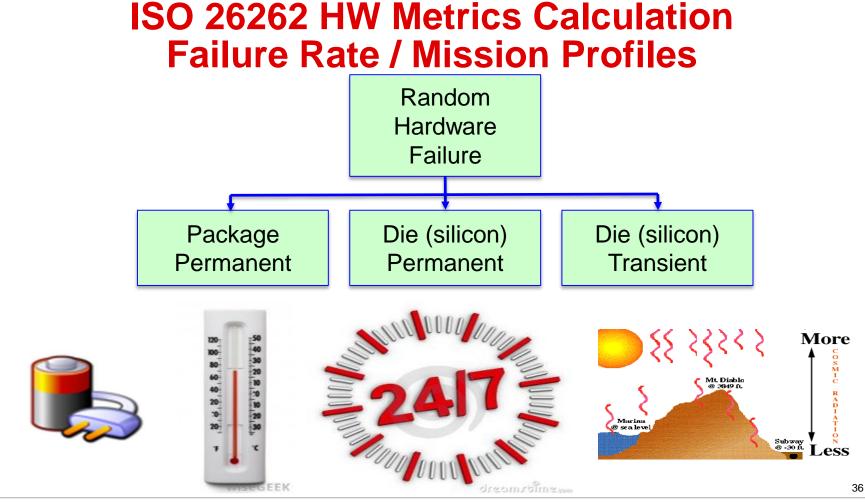

Device Partition	Unique Identifier	Safety Feature or Diagnostic	Feature Recommendation	Possible ISO 26262:2011 Latent Diagnostics
Dennes Owents	PWR1	Voltage monitor (VMON)	м	External Voltage Supervisor
Power Supply PWR2		External voltage supervisor	++	Voltage monitor (VMON)
Power Management Module (PMM)	PMM1	Lockstep PSCON	м	PSCON lockstep self test
	PMM2	Privileged mode access and multi-bit keys for control registers	м	Software test of register configuration and error response
	РММЗ	Periodic software readback of static configuration registers	+	CPU lockstep
	PMM4	Software readback of written configuration	++	CPU lockstep
	PMM5	PSCON lockstep comparator self-test	++	Self-test autocoverage

Table 2. Summary of Safety Features and Diagnostics

- An overview of the safety architecture for management of random failures
- The details of architecture partitions, implemented safety mechanisms, and recommended usage
- · Failure modes and failure rates
- Use Chapter 6 to determine applicable safety mechanisms by MCU module such as Safe Island, SPI, ADC ...

Detailed Safety Analysis Report & FMEDA worksheet

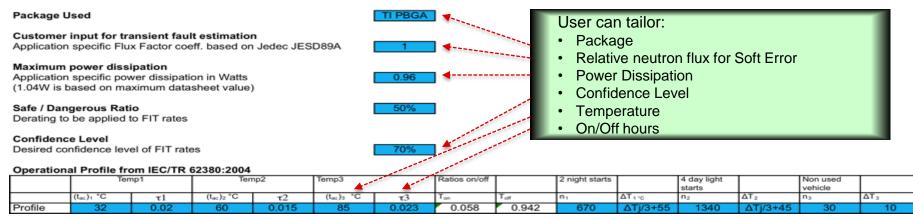
- Failure mode distribution calculated with TI MCU database using YOGITECH Safety Designer tool
- Failure mode coverage verified by fault injection in the TI MCU database using YOGITECH Safety Verifier tool


Available under NDA

TMS570LS12x Detailed Analysis Report spnu531a

Detailed Safety Analysis Report

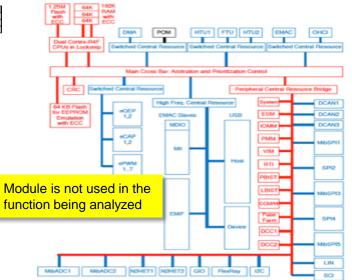
- · Assumptions of use applied in calculation of safety metrics
- Summary of IEC 61508 or ISO 26262 standard safety metrics at the MCU component level
- A fault model used to estimate device failure rates and an example of customizing this model for use with the example application.
- FMEDA with details to the sub-module level of the MCU, that enables calculation of safety metrics based on customized application of diagnostics
- Use of FMEDA worksheet
 - FIT Estimation sheet to tailor use conditions
 - Product Function Tailoring sheet to select MCU modules used
 in safety function
 - Pin Level Tailoring sheet to select MCU pins used in safety function
 - Safety Mechanism Tailoring sheet to select applied Safety mechanisms
 - Summary and Details-ISO26262 or IEC61508 sheets to determine if MCU and modules safety metrics are met.



ISO 26262/IEC61508 HW Metrics Calculation Mission Profiles

Customer input for failure rate estimation

- Automotive Mission Profile in IEC/TR 62380 (FMEDA worksheet default):
 - 10 years service with 3 phases per day night, day, not used
 - 2 night trips per day, 4 day trips per day, 30 days shut down
 - 3 temperature phases
 - · Engine cold, Engine warm, Engine hot
 - On/Off ratio: 0.058 / 0.942


Based on TMS570LS12x v1.0 FMEDA worksheet₃₇

FMEDA worksheet – Product Function Tailoring

Type	Total Size	User Size	Unit
Type SRAM	192	192	Kbytes
FLASH	1.25	1.25	Mbytes
FLASH-FEE	64	64	Kbytes

CPU SubSystem	CPU	Cortex R4F Central Processing Unit (CPU)	YES
CPU SubSystem	VIM	Vectored Interrupt Module (VIM)	YES
CPU Sub-System	NA	LBIST	NO
CPU SubSystem	NA	PBIST	NO
DEBUG	JTG	Joint Technical Action Group (JTAG) Debug/Trace/Cali bration Access	NO
DEBUG	DBG	Cortex R4F Central Processing Unit (CPU) debug and trace	NO
DEBUG	POM	Parameter Overlay Module	NO
RAM System	RAM	SRAM and Level 1 (L1) Interconnect	YES
Flash System	OTP	One Time Programmable (OTP) Flash Static	YES
Flash System	FLA	Primary Flash and Level 1 (L1) Interconnect	YES
Flash System	FEE	Flash emulated EEPROM (FEE)	YES
NTERCONNECT	INC	Level 2/Level 3 (L2/L3) Interconnect	YES
SYSTEM	ESM	Error Signaling Module (ESM)	YES
SYSTEM	PMM	Power Management Module (PMM)	YES
SYSTEM	RST	Resot	YES
SYSTEM	575	System Control	YES
SYSTEM	CLK	Clock	YES
SYSTEM	EFU	EFuse Static Configuration	YES
SYSTEM	DMA	Direct Memory Access (DMA)	YES
SYSTEM	IOM	Input/Output (I/O) Multiplexing (IOMM)	YES
Peripheral	FRY	FlexRey Including FlexRay Transfer Unit (FTU)	NO
Peripheral	CAN	Controller Area Network (DCAN1)	YES
Peripheral	CAN	Controller Area Network (DCAN2)	NO
Peripheral	CAN	Controller Area Network (DCAN3)	NO
Peripheral	GIO	General Purpose Input/Output (GIO)	YES
Peripheral	LIN	Local Interconnect Network (LIN)	NÖ
Peripheral	SCI	Serial Communications	NO
Peripheral	ADC	Multi-Buffered Analog to Digital Converter (MIbADC1)	NÖ
Peripheral	ADC	Multi-Buffered Analog to Digital Converter (MIbADC2)	NO
Peripheral	MSP	Multi-Buffered Serial Peripheral Interface (MbSP(1))	NO
Peripheral	MSP	Multi-Buffered Serial Peripheral Interface (MbSP(3)	NO
Peripheral	MSP	Multi-Buffered Serial Peripheral Interface (MbSP(5)	NO
Peripheral	HET	Next Generation High End Timer (N2HET1) Including HET Transfer Unit (HTU1)	NO
Peripheral	HET	Next Generation High End Timer (N2HET2) Including HET Transfer Unit (HTU2)	NO
Peripheral	SIPI	Seriel Peripheral Interface (SPI2)	NO
Peripheral	SPV	Seriel Peripheral Interface (SPI4)	NO
Peripheral	811	Real Time Interrupt (RTI) Operating System Timer	YES
Peripheral	ETH	Ethomet	NO
Peripheral	EMF	External Memory Interface (EMIF)	NO
Peripheral	USB	Universal Serial Bus (USB)	NO
Peripheral	NC	Inter-Integrated Circuit (I2C)	NO
Peripheral	CAP	Enhanced Capture (eCAP1)	NO
Peripheral	CAP	Enhanced Capture (eCAP2)	NO
Peripheral	CAP	Enhanced Capture (eCAP2)	NO
Peripheral	CAP	Enhanced Capture (eCAP4)	NO
Peripheral	CAP	Enhanced Capture (eCAP5)	NO
Peripheral	CAP	Enhanced Capture (eCAPE)	NO
Peripheral	QEP	Enhance Quadrature Encoder Pulse (eQEP1)	YES
Peripheral	GEP	Enhance Quadrature Encoder Pulse (eQEP1)	YES
Peripheral	PWM	Enhanced Pulse Width Modulators (ePWM1)	YES
Peripheral	PWM	Enhanced Pulse Width Modulators (ePWM2)	YES
Peripheral	PWM	Enhanced Pulse Width Modulators (ePWM3)	YES
Peripheral	PWM	Enhanced Pulse Width Modulators (ePWM4)	YES
Peripheral	PWM	Enhanced Pulse Width Modulators (ePWM4) Enhanced Pulse Width Modulators (ePWM5)	YES
Peripheral	PWM	Enhanced Pulse Width Modulators (ePWM6) Enhanced Pulse Width Modulators (ePWM6)	YES
Peripheral	PWM	Enhanced Pulse Width Modulators (ePWM7)	
Peripheral Power Supply	PWR	Power Supply	YES
rower aupply	1 PRINCE	Power outpry	TES

- · Allow customization of failure rate estimation
- Include only MCU modules used by application
- Include actual Flash and SRAM memory size used

Based on TMS570LS12x v1.0 FMEDA worksheet ³⁸

FMEDA worksheet – Safety Mechanisms Tailoring

Safety mechanisms considered in the FMEDA

From Safety Manual				
Device Partition	Unique identifier	Safety Feature or Diagnostic	Diagnostic Used in Application?	
Power Supply	PWR1	Voltage monitor (VMON)	1	
Power Supply	PWR2	External voltage supervisor	1	
Power Management Module (PMM)	PMM1	Lockstep PSCON	1	
Power Management Module (PMM)	PMM2	Privileged Mode Access and Program Sequence Control Registers	1	
Power Management Module (PMM)	PMM3	Periodic SW readback of static configuration registers	1	
Power Management Module (PMM)	PMM4	SW readback of written configuration	1	
Power Management Module (PMM)	PMM5	PSCON lockstep compare self-test	1	
Clock	CLK1	LPOCLKDET	1	
Clock	CLK2	PLL slip detector	1	
Clock	CLK3	Dual Clock Comparator (DCC)	1	
Clock	CLK4	External monitoring via ECLK	0	
Clock	CLK5A	Internal watchdog -DWD	1	
Clock	CLK5B	Internal watchdog -DWWD	1	
Clock	CLK5C	External watchdog	1	
Clock	CLK6	Periodic SW readback of static clock configuration registers	1	
Clock	CLK7	SW readback of written configuration	1	
Clock	CLK8	Software test of DCC operation	1	
Clock	CLK9	Software test of DWD operation	1	
Clock	CLK10	Software test of DWWD operation	1	
Reset	RST1	External monitoring of warm reset	1	
Reset	RST2	SW check of last reset	1	
Reset	RST3	SW warm reset generation	1	
Reset	RST4	Glitch filtering on reset pins	1	
Reset	RST5	Use of status shadow registers	1	
Reset	RST6	External watchdog	1	
Reset	RST7	Periodic SW readback of static configuration registers	1	
Reset	RST8	SW readback of written configuration	1	
Reset	RST9	Software test of basic reset functionality	1	

- Allow customization of diagnostics selection '1' diagnostic used, '0' diagnostic not used
- Consult Safety Manual Chapter 6

Based on TMS570LS12x v1.0 FMEDA worksheet 39

FMEDA worksheet – Metrics Summary / Details

Summary of ISO 26262 Metrics Examples – Permanent/Transient & Die/Package:

	D	ie	Package	Overall	
	Permanent	Transient	Permanent	Sum	
Total FIT (Raw FIT)					
Safety related FIT	Dete	availab			
Probabilistic Metrics for random Hardware Failures - PMHF (in FIT)		<u>a wannano</u>	1((\$,101)1((0)(\$)		
Single Point Fault Metric - SPFM	99.58%	99.93%	99.93%	99.93%	
Latent Fault Metric - LFM	99.98%	NA	100.00%	100.00%	

ISO 26262 categorization as in ISO 26262:2011-10, 8.1.8

		D	ie	Package	Overall
		Permanent	Transient	Permanent	Sum
Total faults	λ				
Total Safety Related faults	λ_{SR}				
Total Not Safety Related faults	λ_{nSR}				
Total Safe faults	λ_s				
Total not Safe faults	λ _{nS}				
Total faults with prob. of violate the SG	λ_{PVSG}	Data	availab		
Total single point faults	λ_{SPF}	Daila	avamanyi	ie anale	
Total residual faults	λ_{RF}				
Total Multi Point ^(ad)	$\lambda_{\text{MPF}}^{(ad)}$				
Total Multi Point (t)	$\lambda_{MPF}^{(t)}$				
Total Multi Point detected faults	$\lambda_{MPF_{det}}$				
Total Multi Point latent faults	$\lambda_{MPF,I}$				

FMEDA worksheet is available under NDA

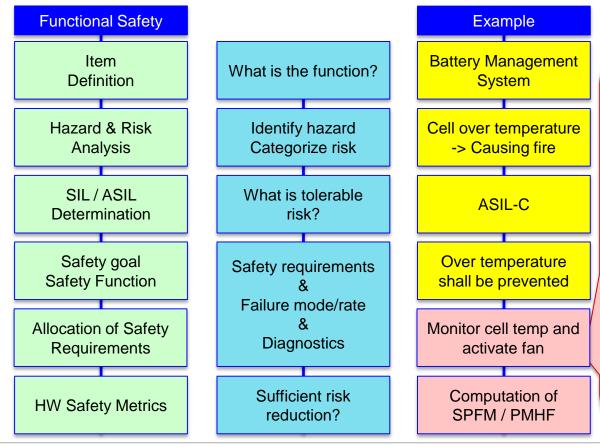
Based on TMS570LS12x v1.0 FMEDA worksheet 40

FMEDA worksheet – Metrics Summary / Details

Details of ISO 26262 Metrics Examples – Permanent/Transient & Die/Package:

		Permanent faults										
Component level	Device Partition (according to TI SM)	Raw Permanen faults FIT	t Total Safety Related fault		in Lambda	ult Safe Fault	failure rate	Lambo	ad L	ambda MPF,t [1]	Multipoint fault detected Lambda MPF_det [v], [w]	Single Point Fault Metric Marra
	Cortex R4F Central Processing Unit (CPU)											99.94%
-	Vectored Interrupt Module (VIM)											99.76%
	LBIST											NA
	PBIST								r			NA
DEBUG	Joint Technical Action Group (JTAG) Debug/Trace/Call bration Access			1	vail	h n	and the second second	- n			al a de la companya d	NA
DEBUG	Cortex R4F Central Processing Unit (CPU) debug and trace	A 200		128 AN	௱௶	<u>ଆ ଚାା</u> ଚ୍ଚ		707			and and a second second	NA
DEBUG	Parameter Overlay Module	A Description	Tear	la an	<u>l'ann</u>	albire					and the factors of	NA
RAM System	SRAM and Level 1 (L1) Interconnect											99.92%
Flash System	One Time Programmable (OTP) Flash Static											99.50%
Flash System	Primary Flash and Level 1 (L1) Interconnect											99.93%
Flash System	Flash emulated EEPROM (FEE)				-							99.95%
	Transient faults											
Component level	Device Partition (according to TI SM)		Total Column		Fail rate Safe Fault Lambda S [h].[i]		the second se	Lambda MPF,ad [ad]	Lambda MPF,t [1]	Single Poir Fault Metri Marra	nt Ic	
		-									-	I
	Cortex R&F Central Processing Unit (CPU)			L _ L						99.95%	_	
	Vectored Interrupt Module (VIM)		Data	avail						99.20%	_	
	LBIST		Jallal				er ini			NA		
CPU SubSystem	PBIST	T T								NA		
								-				_

Details of ISO 26262 Metrics:


FMEDA worksheet is available under NDA

- For Permanent and Transient faults
- By modules (CPU, Flash, SRAM, DCAN, ADC...)

Based on TMS570LS12x v1.0 FMEDA worksheet 41

ISO 26262 Risk reduction

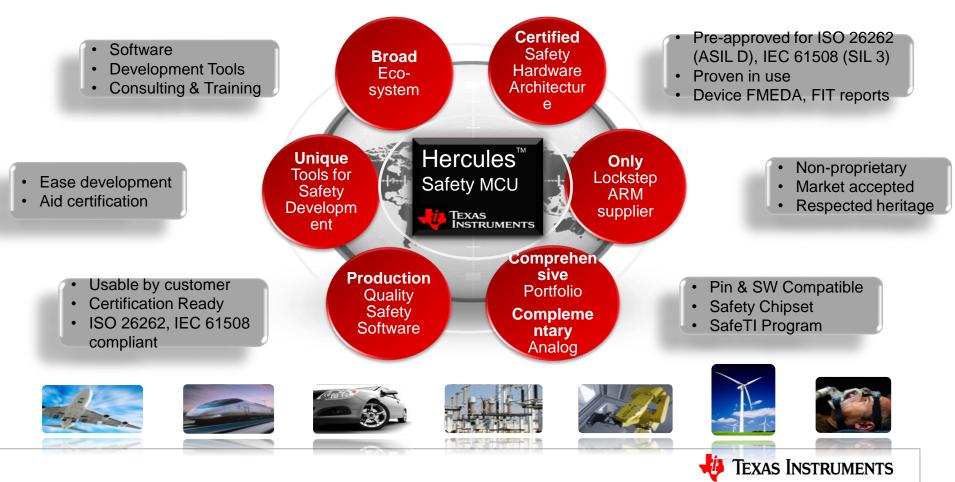
- Use Safety Manual Chapter 6 to determine applicable safety mechanisms by MCU module such as CPU, SRAM, PWR...
- Use FMEDA worksheet
 - FIT Estimation sheet to tailor use conditions
 - **Product Function Tailoring sheet** • to select MCU modules used in safety function
 - Pin Level Tailoring sheet to select MCU pins used in safety function
 - Safety Mechanism Tailoring **sheet** to select applied Safety mechanisms
 - Summary and Details-ISO26262 or IEC61508 sheets to determine if MCU and modules safety metrics are met.

Hercules and SafeTI Process Certifications

Product	Standard	Assessor	Certificate
RM48x (20 Devices)	IEC 61508-1:2010; SIL 3 IEC 61508-2:2010; SIL 3		
RM46x (12 Devices)	IEC 61508-1:2010; SIL 3 IEC 61508-2:2010; SIL 3		
TMS570LS31x/21x (14 Devices)	IEC 61508-1:2010; SIL 3 IEC 61508-2:2010; SIL 3 ISO 26262-2:2011; ASIL D ISO 26262-5:2011; ASIL D		
TMS570LS12x/11x (10 Devices)	IEC 61508-1:2010; SIL 3 IEC 61508-2:2010; SIL 3 ISO 26262-2:2011; ASIL D ISO 26262-5:2011; ASIL D		
SafeTI Development Process for IEC 61508 and ISO 26262 Compliant Hardware Components	IEC 61508-1:2010; SIL 3 IEC 61508-2:2010; SIL 3 ISO 26262-2:2011; ASIL D ISO 26262-5:2011; ASIL D		
SafeTI Functional Safety Software Development Process	IEC 61508-1:2010; SIL 3 IEC 61508-3:2010; SIL 3 ISO 26262-2:2011; ASIL D ISO 26262-6:2011; ASIL D ISO 26262-8:2011; ASIL D		

56 Hercules products certified and counting!!

<u>RM48x</u>, <u>RM46x</u> and <u>RM42x</u> certified to IEC 61508 SIL 3 for Industrial functional safety applications.


TMS570LS31x/21x, TMS570LS12x/11x and TMS570LS04/03/02x certified to ISO 26262 ASIL D for Automotive functional safety applications.

SafeTI Hardware and Software development processes also certified.

Reduce time and effort to certify your end system!!

Hercules MCUs Accelerating Safety Products to Market

Why TI for Battery Management System

MCU leadership in automotive safety applications:

- Braking -- 65% share,
- Airbag 40% share
- EPS >20% and growing

20+ years automotive experiences:

- Q100 qualification
- Zero defect (0 dppm)
- Product supply longevity
- -40c to 125c temp specification

SafeTI chip set (TMS570 + bq76PL455A + EMB14xx) for integrated safety BMS system

ISO 26262 certified MCU with documentation and tools ease system certification effort

Thank You

Contact Information: Hoiman Low: hm-low@ti.com Loyal Bao:loyal-bao@ti.com