
10 December, 2016

WITTENSTEIN high integrity systems

© WITTENSTEINwww.HighIntegritySystems.com

By

Stephen Ridley

Using the MPU with an RTOS to Enhance

System Safety and Security

www.HighIntegritySystems.com © WITTENSTEIN 2

WITTENSTEIN high integrity systems

WITTENSTEIN high integrity systems: A World Leading RTOS Ecosystem

www.HighIntegritySystems.com © WITTENSTEIN 3

WITTENSTEIN high integrity systems

Objectives

• Safety Systems, Functional Safety, Software Components and Partitioning.

• Multi Core and Multi Processor Architectures as a means of Partitioning.

• Using the MPU to Partition and Protect.

www.HighIntegritySystems.com © WITTENSTEIN 4

WITTENSTEIN high integrity systems

Safety, Security, Software and Systems

• In embedded systems, when we talk about “Safety”, we usually mean ‘Functional Safety’.

Every industry sector has its own set of standards setting out the development steps and

verification activities required for a product to achieve a given Safety Integrity Level (SIL).

• When we are talking about “Security”, we mean guaranteeing integrity, preventing

intrusion and unauthorized use of resources.

• For both of these aims, using an MPU can help by preventing code from operating or

accessing data outside of its assigned bounds.

• Does not matter which industry sector or standards we need to be compliant to, using an

MPU can help to prove that the system is operating within its assigned parameters.

• Finally, “Safety” and “Security” apply to “Systems” and can encompass multiple devices

featuring hardware and software; however we are primarily concerned with software within

this talk.

www.HighIntegritySystems.com © WITTENSTEIN 5

WITTENSTEIN high integrity systems

Software Components and System Partitioning

Another use for an MPU is to enforce partitioning. This is just part of the wider subject of

mixed SIL programming, where critical parts of the system are developed to the required

SIL level. However, we may also use commercial grade software (COTS or SOUP) as well

as lower grade software developed in house.

For full mixed SIL programming to work, we need to:

1) Identify safety functions and use case requirements.

2) Ensure that the system architecture can supply the necessary spatial separation (i.e.

prohibit memory accesses by non-safety code that could compromise the operation of

the safety software).

3) Ensure that the system architecture can supply the necessary temporal separation (i.e.

prove that non-safety software cannot prevent the safety software having sufficient run

time to achieve its purpose).

4) Be able to prove that the requirements have been correctly implemented.

www.HighIntegritySystems.com © WITTENSTEIN 6

WITTENSTEIN high integrity systems

Use Case – An Embedded System

Standard practice says that all software must be developed to the highest SIL level

required.
Control

Logic

Display

Driver

Output

Driver

Sensor

Processing

Flash

Driver

Flash

Memory
Display ActuatorS S S S

www.HighIntegritySystems.com © WITTENSTEIN 7

WITTENSTEIN high integrity systems

Use Case – An Embedded System

Control

Logic

Display

Driver

Output

Driver

Sensor

Processing

Flash

Driver

Flash

Memory
Display ActuatorS S S S

www.HighIntegritySystems.com © WITTENSTEIN 8

WITTENSTEIN high integrity systems

Use Case – Marketing and Ambitious Engineers Now Involved

Control

Logic

Display

Driver

Output

Driver

Sensor

Processing

Flash

Driver

Flash

Memory
Display ActuatorS S S S

USB Device

Stack

FAT File System

USB SD Card

Network

Stack

Ethernet

www.HighIntegritySystems.com © WITTENSTEIN 9

WITTENSTEIN high integrity systems

Use Case – An Embedded System

We now have:

• Critical safety software.

• Commercial third party software that we have no control over.

• Other software not developed to the required SIL.

Control

Logic

Display

Driver
Output

Driver

Sensor

Processing
Flash

Driver

Flash

Memory
Display ActuatorS S S S

USB Device

Stack

FAT File

System

USB SD Card

Network

Stack

Ethernet

www.HighIntegritySystems.com © WITTENSTEIN 10

WITTENSTEIN high integrity systems

Use Case – An Embedded System

For this system to be implementable in an acceptable manner for a safety system, we need

to be able to demonstrate:

• Spatial separation between the safety code/data and the non-safety code/data.

• Temporal separation between the safety code and the non-safety code.

• Data passed through non-safe components is either not safety related or protected by

other protocols.

Control

Logic

Display

Driver
Output

Driver

Sensor

Processing
Flash

Driver

Flash

Memory
Display ActuatorS S S S

USB Device

Stack

FAT File

System

USB SD Card

Network

Stack

Ethernet

www.HighIntegritySystems.com © WITTENSTEIN 11

WITTENSTEIN high integrity systems

Using Multiple Processors to Achieve Separation

• Relatively easy from a software perspective in that there is clear isolation between safety

and non-safety components.

• More expensive and complicated hardware (not optimal in low cost embedded systems).

Control

Logic Display

Driver

Output

Driver

Sensor

Processing
Flash

Driver

Flash

Memory
DisplayActuatorS S S S

USB Device

Stack

FAT File

System

USBSD Card

Network

Stack

Ethernet

Control

Logic

Safety Processor Support Processor

www.HighIntegritySystems.com © WITTENSTEIN 12

WITTENSTEIN high integrity systems

Using a Multi-Core Processor to Achieve Separation

• Easier hardware design, only one set of peripheral components.

• As both cores typically share access to memory and peripherals it is difficult to claim

spatial separation without using an MMU or MPU.

Control

Logic Display

Driver

Output

Driver
Sensor

Processing
Flash

Driver

Flash

Memory
DisplayActuatorS S S S

USB Device

Stack

FAT File

System

USBSD Card

Network

Stack

Ethernet

Control

Logic

Safety Core Support Core

RAM

Flash

Memory

Shared Peripherals

www.HighIntegritySystems.com © WITTENSTEIN 13

WITTENSTEIN high integrity systems

A Single Core System has no Inherent Separation.

• Different approach needed to achieve spatial separation.

• An MPU or MMU can be used to achieve spatial separation.

Control

Logic
Display

Driver

Output

Driver
Sensor

Processing Flash

Driver

Flash

Memory
DisplayActuatorS S S S

USB Device

Stack

FAT File

System

USBSD Card

Network

Stack

Ethernet

Control

Logic

Single Core

Hardware Peripherals

RAM

Flash

Memory

www.HighIntegritySystems.com © WITTENSTEIN 14

WITTENSTEIN high integrity systems

Using a Memory Protection Unit (MPU)

• The MPU is used to prevent access to unauthorised regions within the memory map.

• Microprocessors that have an MPU typically allow a number of “memory regions” to be

defined. This is usually a memory range and associated access permissions.

• Some differences depending on the silicon manufacturer (e.g. ARC processors feature

prioritised MPU regions whereas others are additive with respect to granting of

permissions).

• Whatever the flavour, the action is the same, a processor exception will be generated if an

illegal access is attempted.

RAM

FLASH

Region 1 (RW)

Region 0 (RX)

Any access will generate a fault.

OK to read or write, but a jump

will generate an access fault.

Region 2 (RW)

Region 3 (RW) ADC

SPI

Access permitted to ADC and SPI

peripherals only.

www.HighIntegritySystems.com © WITTENSTEIN 15

WITTENSTEIN high integrity systems

Using a Memory Protection Unit (MPU)

• Use processor privilege modes. Different access permissions can be granted depending

on whether the processor is running in privileged mode or not.

Region 4 (Sup RX + User RX)

Region 6 (Sup RW + User NA)

Region 7 (Sup RX + User NA)

Privileged (Safety) RAM

UART

Privileged (Safety) Code

Unprivileged Code

General Access RAM

Region 5 (Sup RW + User NA)

Region 3 (Sup RW + User RW)

Region 2 (Sup RW + User RW)

www.HighIntegritySystems.com © WITTENSTEIN 16

WITTENSTEIN high integrity systems

MPU and a Real Time Operating System (RTOS)

When using an RTOS, the application is broken up into tasks or threads. Communication

between tasks is frequently accomplished with Queues or Events that are managed by the

RTOS.

• This gives much more opportunity for enforcing partitioning at a fundamental level if the

RTOS provides native support for the MPU.

• If the RTOS in use does not provide native support for the MPU, then we have a similar

scenario to the previous arrangements except that we have a new problem, the code and

data for the RTOS itself. This has to be trusted at the highest SIL level of the application.

Region 4 (Sup RX + User RX)

Region 6 (Sup RW + User NA)

Region 7 (Sup RX + User NA)

Privileged (Safety) RAM

UART

Privileged (Safety) Code
Unprivileged Code

General Access RAM

Region 5 (Sup RW + User NA)

Region 3 (Sup RW + User RW)

Region 2 (Sup RW + User RW)

RTOS Code and Data

www.HighIntegritySystems.com © WITTENSTEIN 17

WITTENSTEIN high integrity systems

Using an RTOS with Integrated MPU Support (e.g. SAFERTOS)

Integrated MPU Support allows us to:

• Protect the RTOS Kernel Code and Data from unauthorised access using fixed regions

that are setup during system initialisation.

Peripherals

Region 7 (Sup RX + User RX)

Region 0 (Sup RW + User NA)

Region 1 (Sup RX + User NA)

Kernel Data

Kernel Code

Application Code

Application RAM

Region 6 (Sup RW + User RW)

Note: This example assumes

8 prioritised MPU regions

where low number regions

are high priority.

www.HighIntegritySystems.com © WITTENSTEIN 18

WITTENSTEIN high integrity systems

Using an RTOS with Integrated MPU Support

Integrated MPU Support allows us to:

• Provide a degree of task isolation by protecting user task stacks. Some MPU regions are

reprogrammed on each context switch.

Region 7

(Sup RX +

User RX)

Region 0

(Sup RW +

User NA)

Region 1

(Sup RX +

User NA)

Peripherals

Kernel Data

Kernel Code

Application Code

Region 6

(Sup RW +

User RW)

Peripherals

Kernel Data

Kernel Code

Application Code

Peripherals

Kernel Data

Kernel Code

Application Code

Region 2

(Sup RW +

User RW)

Region 2

(Sup RW +

User RW)

Region 2

(Sup RW +

User RW)

TASK 1 TASK 2 TASK 3

www.HighIntegritySystems.com © WITTENSTEIN 19

WITTENSTEIN high integrity systems

Using an RTOS with Integrated MPU Support

Integrated MPU Support allows us to:

• Reprogram the MPU during each context switch and therefore allow each task to have its

own set of configurable regions.

Region 7

(Sup RX +

User RX)

Region 0

(Sup RW +

User NA)

Region 1

(Sup RX +

User NA)

Peripherals

Kernel Data

Kernel Code

Application Code

Region 6

(Sup RW +

User RW)

Peripherals

Kernel Data

Kernel Code

Application Code

Peripherals

Kernel Data

Kernel Code

Application Code

Region 2

(Sup RW +

User RW)

Region 2

(Sup RW +

User RW)

Region 2

(Sup RW +

User RW)

TASK 1 TASK 2 TASK 3

Global data region.

Region 5 (Sup RW +

User RW)

Global data region.

Region 5 (Sup RW +

User RO)

Shared data region.

Region 3

User RWUser RO

Private data

region

www.HighIntegritySystems.com © WITTENSTEIN 20

WITTENSTEIN high integrity systems

Common Problems with Using the MPU

• Human nature – designing the memory map, managing the linker script etc. are non trivial

especially when the development spans multiple teams. The tendency to allocate

everything to shared data or declare the task privileged has to be managed.

• Not enough regions – even when everybody is on-board, most microprocessors do not

offer enough memory regions to really control the memory space.

• Interrupt handlers – will always be privileged and therefore typically are not constrained by

the MPU. Or if they are constrained then they will run with permissions in force when the

exception occurs.

• What to do when an error is detected – in a microprocessor based system, managing to

recover from a major fault condition such as a hard fault or MPU fault is difficult.

www.HighIntegritySystems.com © WITTENSTEIN 21

WITTENSTEIN high integrity systems

Summary

• Why an MPU can be helpful in systems that need to be certified as safe or secure.

• Multi Core and Multi Processor Architectures as a means of partitioning and how the MPU

is still useful.

• What we can do with the MPU to partition and protect.

• How an RTOS that natively supports the MPU gives greater scope with regards to

partitioning.

