Embedded Security for Internet of Things Forum Research Activities for Embedded System Security

Yutaka MATSUBARA Assistant Professor, Nagoya University, Japan Web: http://www.ertl.jp/~yutaka/profile-e.html E-mail: yutaka@ertl.jp

Agenda

- Introduction
- Trends regarding Embedded System Security
- Security by Design in Embedded System Development
- Software Platform for Safety and Security Critical Embedded System

3

Self Introduction – Yutaka MATSUBARA

Current Positions

- Assistant Professor, Graduate School of Information Science, Nagoya University
- Committee member, TOPPERS
 Project
- Technical adviser for several companies

Major Research Topics

- Real-time operating systems and networks for embedded systems
 - e.g. AUTOSAR compatible RTOS, Ethernet AVB
- Real-time scheduling and analysis
- Functional safety and security for embedded systems including IoT devices

My Research Fields

Design, Implementation, Validation of Embedded Systems

Location of Nagoya

Organizational Overview

Embedded and Real-Time Systems Laboratory

- Prof. Takada's and Prof. Edahiro's Laboratories
- Many joint projects with industries

→ http://www.ertl.jp

NCES (Center for Embedded Computing Systems)

- Several (relatively) large-scale joint projects with companies including car makers, car component suppliers, and semiconductor makers
- Projects for educating engineers

→ http://www.nces.is.nagoya-u.ac.jp

TOPPERS Project

- Independent non-profit organization
- Distribution of open-source RTOS and middleware
- Cooperation of academia, industry, public research institutes, and individual engineers

→ http://www.toppers.jp

TOPPERS

Trends regarding Embedded System Security

Why is embedded system security remarkable?

Highly-functional and networked embedded systems

- Increasing embedded products connected to Internet or each others
- Employed existing technologies instead of originally developed software
 - e.g. OS, TCP/IP stack, USB stack, etc.
 →embedded systems can be attacked by security threats

Security problems can impact to safety

- Functional safety has been spread in industry.
- But, violation of security policy can lead to violation of safety requirements.

→Not only safety measures but also security measures are important for embedded system safety

Differences between Safety and Security

	Safety	Security
Target Area	 Only safety related parts in target product Only for failures in target product Developers and users are reliable as assumption. 	 Target product and connected products Developers and users may be unreliable. Third party's (attacker's) intentionality
State to guarantee property	 Safe state can be defined in almost systems. 	 Secure state cannot be defined. Security Threat will increas in future.
Definition of Level for measures	 SIL(Safety Integrity Level) 	 SAL(Security Assurance Level) TAL(Trust Assurance Level)
International Standard	 Many standards for functional safety have been already published. 	 ISO 15408 is used well for information security. But, standards for embedded system security are under discussion.

Security threats for embedded systems

Home appliances

http://www.insurancejournal.com/news/international/ 2014/07/18/335214.htm Automotives

http://www.autoblog.com/2014/07/18/auto-industry-dealswith-hacking-cyber-threats/

Medical devices

http://www.theregister.co.uk/2011/10/27/fatal_insulin_pump_attack

Industrial Robots

http://www.iec.ch/etech/2014/etech_0614/ca-1.htm

Threat for Automotive control system

- Prof. Kohno in Univ. of Washington reported that they could attack to automotive control systems in 2010
- In 2011, remote attacks for cars were also succeed through 3G network and CD player

引用: 2011 年度自動車の情報セキュリティ動向に関する調査http://www.ipa.go.jp/files/000024413.pdf

Remote Attacks for Automotive

Remote access via OBD-II

http://www.wired.com/2015/08/hackers-cutcorvettes-brakes-via-common-car-gadget

Modification of LIDAR's signal

http://spectrum.ieee.org/cars-that-think/ transportation/self-driving/researcher-hacksselfdriving-car-sensors? utm_source=feedburner&utm_medium=feed&ut m_campaign=Feed%3A +IeeeSpectrumCarsThatThink+%28IEEE +Spectrum+Cars+That+Think%29

Direct Attack to IoT Gateway

- LI Jun, YANG Qing: I'M A NEWBIE YET I CAN HACK ZIGBEE, DEF CON 23, 2015年
- Injustice operations to home appliances connected to IoT gateway via WIFI and Zigbee
 - Attacked to IoT gateway physically
 - Performed reverse engineering firmware and identified private key for authentication of IoT devices
 - By using the private key, attackers could access to IoT devices

Attacks to gateway will increase in future.

Open source testing tools

International Standard for safety and security

Problems about Embedded System Security

Lack of specialists and engineers

- The number of safety engineers are increasing
- But, the number of security engineers who have enough knowledge about embedded systems are insufficient

Standards/Guidelines are under development

- International standard for functional safety and Information security have been spread in industry
- But, standard for security of embedded systems, especially for safety-critical systems is not published
- There are several guidelines published by IT companies or governments

Education for security engineers and guidelines are required!

Security by Design

Design Process for Security

Fundamental concept for Security Measures

Mitigation of risk level

Considerable Point in Practical Design Phase

Security (Threat) Analysis

<u>Objectives</u>

- Identify security threads regarding a target system, and document results
- Find unintended vulnerabilities
- Threat analysis should be performed each design phase repeatedly
 Evaluate each risk

Problems

- How can we analyze security threats exhaustively?
 - → Analysis should be performed from several viewpoints by using multiple analysis methods
 - As is the case with safety analysis

Result (Violation of asset)

Cause (Vulnerability)

>Threat

Top-down approach: Attack Tree

From attacker's view, vulnerability and attack methods are analyzed.

Problem : It's very hard for designers who do not have sufficient knowledge about security attacks to analyze exhaustively

HAZOP-based methods

- Analyze effects for violations in confidentiality, integrity and availability of each data and process
- Analyze vulnerability which can lead unacceptable violations
 →Easy to use compared to top-down approach

Guidewords to support threat analysis

STRIDE Our proposal

S poofing	Target	Guideword
Tampering		Omission
Repudiation	Sorvico	Commission
Information Disclosure	Service	Early
Denial of Service		Late
Elevation of Privilege		Probe
http://msdn.microsoft.com/ja-jp/magazine/ cc163519.aspx		Scan
→This method is for IT-securit	y	Flood
	Data, Device,	Authenticate
	Commnunication	Spoof
		Bypass
		Modify
		Read

Case Study: Open Source Immobilizer

Target System

- Open source immobilizer prototype system by Atmel
- All document and software are opened

System Construction

Analysis using sequence diagram

Part of Results

P *	P Secondary						Doggiblo			
R *	F *	A *	S *	M	B *	Deviation	Local Effect	Global Effect	Attacks	
	Read UID									
•	•	-	-	-	-	Flooding the KEY Fob with Read-UID-like request, which makes the KEY Fob unable to receive and deal with connections any more	The KEY Fob will not be able to send the UID information to the car.	Failure of the exchange of UID information between a registered KEY Fob and the car. The authentication will not be triggered regardless of the user's request.	Denial- Of- Service Attacks	
•	-	-	•	-	-	ransponders can be used to relay the communications between the car and the key fob.	Without the genuine key fob being in the communication range, the car will be tricked to send a Read UID request to a transponder near the car.	Without user's intention, the key fob will receive a Read UID request through a transponder near the key fob. Person with the KEY Fob that is associated with a specific UID could be tracked down for their whereabouts.	Tracking	
•	-	-	-	•	-	Falsification of data during the transportation.	A non-Read UID request will be sent to the key fob.	Unauthorized falsification will be ignored by the verification of CRC checksum.	Unauthori zed Falsificati on	
							Return UID		•	
•	•	-	-	-	-	Flooding the car with Return- UID-like information, which makes the car unable to receive and deal with connections any more.	The car will not be able to receive the UID information from KEY Fob.	Failure of the exchange of UID information between a registered KEY Fob and the car. The authentication will not be triggered regardless of the user's request.	Denial- Of- Service Attacks	
•	-	-	•	-	-	The car will receive UID information within the the Return UID from Unregistered key fob or unknown device.	By constantly sending Return UID until a challenge is received, the attacker may be able to acquire the UID information stored in the car.	With the UID information in hands, it just extends the possibility to launch all kinds of attack.	Relay Attack	
•	-	-	-	•	-	Falsification of data during the transportation.	A non-Return UID request will be sent to the key fob.	Unauthorized falsification will be ignored by the verification of CRC checksum.	Unauthori zed Falsificati on	

 J. Wei, Y. Matsubara, H. Takada, "HAZOP-based Security Analysis for Embedded Systems: Case Study of Open Source Immobilizer Protocol Stack", IWSSS2015, Jun 2015.

Security Measures in production, operation, abolish phase

Production phase

- Identify confidential information (e.g. firmware, key, password, etc.) for protection of assets
- Manage who can access confidential information
- Prevent leak of confidential information and unintended update

Operation phase

- Manage information about vulnerability, threat found after release of products
- Manage software update process

Abolish phase

- Manage how to remove or abolish confidential information included in products
 - Someone may resell your products

Software Platform for Safety and Security Critical embedded systems

Functional Requirements for software platform for IoT devices

- Security Libraries
 - Crypto library, TLS/DTLS, IPSec, …
- Diverse communication protocols
 - CoAP, MQTT, LWM2M, REST/HTTP,…
- Protection of software platform
 - Memory protection, Time protection, …
- Updating of software
 - Updating of OS, libraries, middleware, …
- Energy management
 - Power management of CPU, memory, peripherals, …

TOPPERS/SafeG

- SafeG (Safety Gate) is a dual-OS monitor designed to concurrently execute an RTOS and a GPOS on the same hardware platform.
- SafeG's architecture takes advantage of the ARM TrustZone security extensions which introduce the concept of Trust and Non-Trust states.

Motivations of New Temporal Partitioning Scheme

Increasing Necessity of Partitioning Function

- For efficient support for functional safety, partitioning function is important for saving software development and verification cost.
- A key technology for application integration (ECU integration)

Lack of Good Partitioning Standard

- Timing protection of AUTOSAR has some problems.
 - Both Vector and EB do not rely on it.
- ARINC 653 (a standard for avionics systems) approach is too strict for automotive systems.

Necessity of a Standard

- We need a standard partitioning scheme applicable to different RTOS.
 - We would like to apply it to both ITRON and AUTOSAR.

Problems of AUTOSAR Timing Protection

Unit for timing protection is too small

- Unit of protection should be partition, rather than tasks and ISRs.
- This causes following two problems.

Schedulability analysis becomes pessimistic

• The max. execution time of the protection hook should be added to the max. exec. time of each task/ISR.

Mode change is not supported

- This problem is serious when a partition is terminated or restarted (how to schedule the restart task?).
- Timing protection violation within a trusted function Complicated specification and implementation
 - eg. *DisableAllInterrupts* does not disable all interrupts.

Proposed Temporal Partitioning Scheme

Timing protection by the unit of partition

- Extend the ARINC 653 scheme to accommodate system-level interrupts.
 - Interference due to system-level interrupts need to be permitted (not "*strict partitioning*").
 - Monitoring functions for system-level interrupts may be added.

Restricted use of privileged services

- Privileged services for accessing shared resource/device are permissible, but their usage should be restricted.
- There is an opinion to totally remove the function of privileged services.

Overview of the Proposed Scheme

- The system cycle is divided into several time windows.
- Each time window is assigned to a partition. The partition is executed with the assigned time windows.
- The idle window is placed at the last of the system cycle and is not assigned to a partition.
- A system-level interrupt does not belong to any partition and is executed regardless of the time window.

The new scheme will be employed in both of TOPPERS/HRP3 and ATK2 Kernel.

CaCAN (Centralized authentication for CAN network)

Our protocol is designed to authenticate between a monitor node and other ECUs.

- Number of authentication messages = $3 \times$ Number of sending nodes with MACs
- The monitor node has the specialized CAN controller (named HMAC-CAN), but other existing nodes does not change.
- The HMAC-CAN controller can destroy unauthorized message by overwriting it by error frame.

Ryo Kurachi, Yutaka Matsubara, Hiroaki Takada, Naoki Adachi, Yukihiro Miyashita and Satoshi Horihata, "CaCAN - Centralized Authentication System in CAN", ESCAR 2014 Nov 2014.

Summary

- Trends regarding embedded system security are remarkable
- "Security by Design" is important for embedded systems especially for IoT devices
- We have developed and distributed software platform for safety and security critical embedded system including automotive control system

Collaborative project or discussion would be welcome!