Integrating Functional Safety with ARM

November, 2015 Lifeng Geng, Embedded Marketing Manager

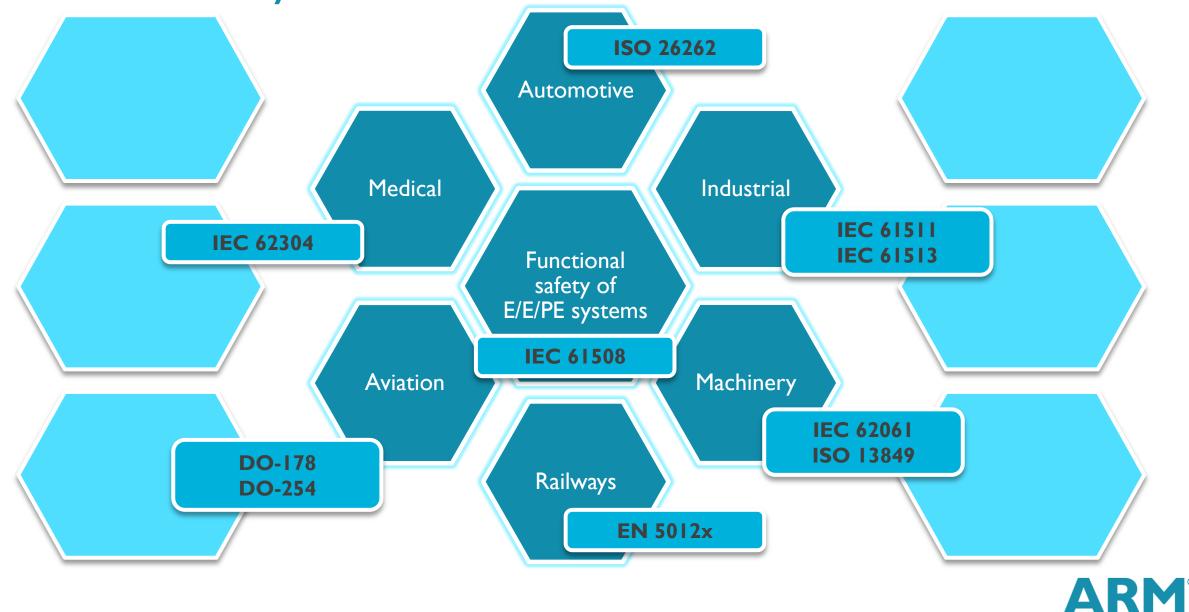
The Architecture for the Digital World®

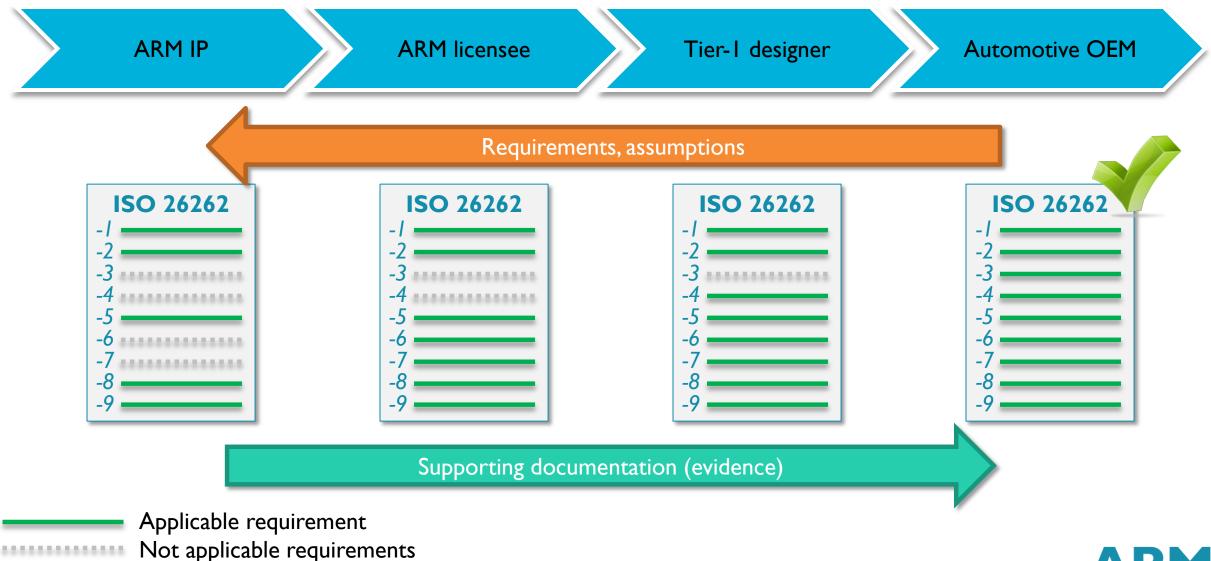
ARM: The World's Most Scalable Architecture

ARM ecosystem meets needs of vertical markets – from sensors to servers

- Addressing automotive, consumer, industrial, mobile, medical, metering and beyond
- I2bn ARM chips shipped in 2014 alone increasingly becoming connected as part of IoT
- ARM's market share at 37% overall

Functional Safety support is becoming essential

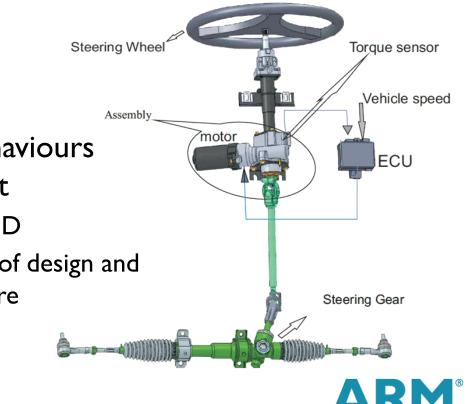

- Compliance with safety standards is required in many markets
- Visible reminders everywhere of the importance of electronics to automotive industry
- Also applies to other sectors: medical, factory automation, robotics, automotive, transport...



ARM white papers provide more detail

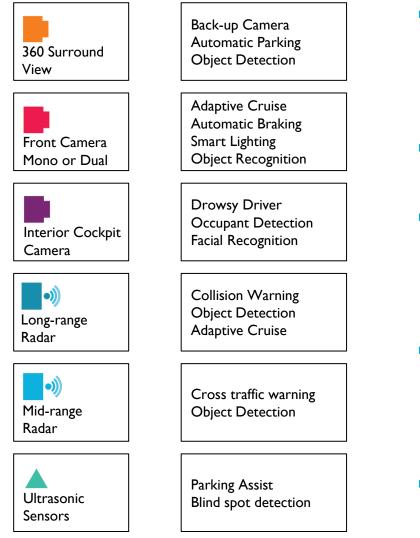
Functional Safety – Standards

How the standard is being used in the industry?



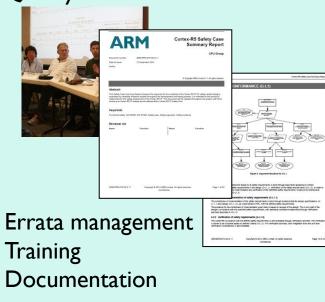
5

Functional Safety Example

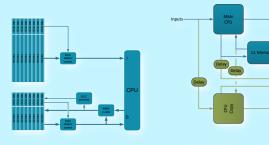

Electric Power Steering

- An example of a control system which must demonstrate functional safety
 - Must continue to function or at least behave predictably in event of a fault
 - By predictable behaviour we mean it must shut down, fail safe, reset and restart etc.
- Functionally safe systems aim at preventing hazardous behaviour in event of a fault
- Level of risk resulting from potential malfunctioning behaviours is quantified through hazard analysis and risk assessment
 - Automotive Safety Integrity Levels range from ASIL A to ASIL D
 - The higher ASIL requirement dictates the level of robustness of design and verification processes, and often also leads to inclusion of more fault detection and control features

Another Example: ADAS Sensors and Functions



- Lots of sensors cameras, radars, ultrasonic, and many more to come.
- Lots of opportunity for redundancy of functions
- Semi-autonomous driving can be achieve today with embedded control
- V2V and V2I will offer supplemental control from the cloud and greater redundancy
- Fail functional is need for safety features.


Functional Safety Support for ARM IP

Safety management Requirements management Quality

Processes

Fault detection/control features Memory Protection Error Correction Dual Core Lock-Step

Abort mode System Error Fault containment

Design & Verification

ARM IP Product Safety Package * Safety Manual Failure Modes and Effects Analysis Development Interface Report

Safety Package

* Supported IPs have separate licensable package

Functional Safety Support Levels

Standard level support

- Focus on systematic aspects
 - Design and verification description
 - FMEA Report with example quantitative analysis
- External fault detection and control mechanisms to ARM IP typically required
 - Software-based solutions
 - System-level solutions
- Example processors
 - Cortex-M0+, Cortex-M3, Cortex-M4
 - Cortex-A53, Cortex-A57, Cortex-A72

Extended level support

- Covers both systematic and random HW fault aspects
 - Robust fault detection and control mechanisms within the design
- External fault detection and control mechanisms not typically necessary
 - Dependent on overall system architecture
- Example processors
 - Cortex-R5
 - Cortex-M7

Levels of Support Explained

	Standard level	Extended level
Typical safety requirements	Up to ASIL B (ISO 26262) / SIL 2 (IEC 61508)	Up to ASIL D (ISO 26262) / SIL 3 (IEC 61508)
Target application areas	Monitoring, processing, analysis applications, e.g. ADAS, general process control	Real-time control applications, e.g. braking, EPS, industrial safety
ARM functional safety support documents	 Safety Manual FMEA Report Development Interface Report 	 Safety Manual FMEA Report Development Interface Report
FMEA format	Functional level analysis with estimated failure rate distribution	Detailed analysis with estimated failure rate distribution and diagnostic coverage
Fault detection and diagnostics within ARM IP	Limited or no diagnostic coverage achievable by hardware-only means. Additional diagnostics by system-level or software means	Typically very high diagnostic coverage achievable by hardware-only means

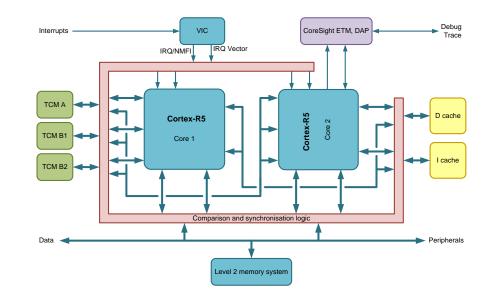
Fault Detection and Control Features

Processor specific features

- Typically redundant elements in the design
- Not required for normal operation
- Provide additional fault detection capability
- Estimate of diagnostic coverage possible

Examples

- ECCs
- Lock-step

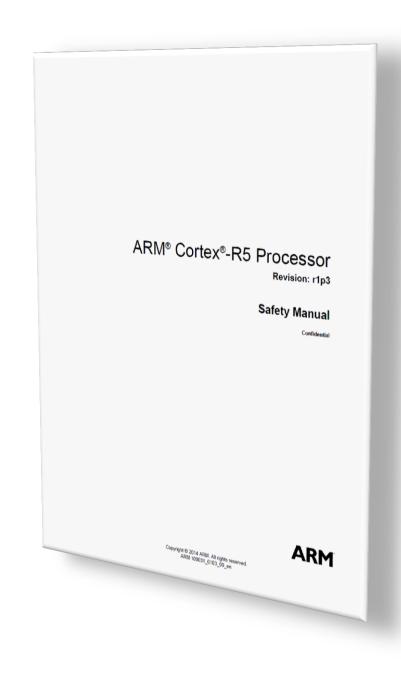

- Architecture defined features
 - Applicable to all processors implementing the architecture
 - Generic in nature, with potentially lower fault detection capability
 - Estimation of diagnostic coverage difficult
- Examples
 - Exception handling
 - Memory protection and management

Example: Cortex[®]-R5 Fault Detection and Control

- Processor specific
 - TCM ECC
 - Cache ECC and parity
 - TCM external error
 - Bus protection
 - Dual core lock-step with delay

- ARMv7-R architecture based
 - Memory protection unit (MPU)
 - Exception model

Safety Documentation Package Contents


- Essential documentation to support designing SoC / MCU products for safety-related markets
- Three key documents within the Safety Documentation Package:
 - Safety Manual
 - Overall description of functional safety activities within ARM
 - Product specific aspects of functional safety
 - Overview of safety architecture
 - Description of fault detection and control mechanisms
 - Summary of safety analysis results

- Failure Modes and Effects Analysis Report
 - Block and sub-block level partitioning
 - Estimated failure rate distributions
 - Sample quantitative analysis
- Development Interface Report
 - Identification of safety-lifecycle aspects applicable to ARM and IP integrator

Cortex[®]-R5 Safety Manual

- Contents at top level
 - Introduction
 - Cortex-R5 safety lifecycle
 - Cortex-R5 safety architecture
 - Cortex-R5 configuration options
 - Cortex-R5 fault detection and control mechanisms
 - Cortex-R5 assumptions of use
 - Cortex-R5 safety analysis results
 - Appendix ECC tables
 - Appendix Measures for systematic fault avoidance
 - Appendix Lock-step initialization sequence
- Total contents about 150 pages

Cortex[®]-R5 Safety Manual

	Prefa	ace	
		About this book	
		Feedback	10
Chapter 1	Intro	oduction	
	1.1	Role of ARM IP in safety context	1-12
	1.2	Intended use of this document	1-14
Chapter 2	Cort	ex-R5 Processor Safety Lifecycle	
	2.1	About the Cortex-R5 processor safety lifecycle	
	2.2	Overall functional safety management	
	2.3	Project specific functional safety management	2-19
	2.4	Functional safety audits	
	2.5	Functional safety assessments	2-24
Chapter 3	Cort	ex-R5 Processor Safety Architecture Overview	
	3.1	About the Cortex-R5 processor safety architecture	
	3.2	Single core configuration	3-30
	3.3	Dual core lock-step configuration	3-31
Chapter 4	Cort	ex-R5 RTL Configuration Options	
	4.1	About Cortex-R5 configuration options	4-33
	4.2	RTL configuration for internal TCM ECC	4-34
	4.3	RTL configuration for cache ECC	
	4.4	RTL configuration for cache parity	4-37
	4.5	RTL configuration for TCM external error	
	4.6	RTL configuration for L2 AMBA bus diagnostics	4-39
	4.7	RTL configuration for Memory Protection Unit	
	4.8	RTL configuration for exceptions	
	4.9	RTL configuration for lock-step	
	4.10	RTL configuration for split/lock	

Chapter 5	Cort	ex-R5 Processor Fault Detection and Control Mechani	isms
	5.1	About Cortex-R5 fault detection and control mechanisms	
	5.2	Internal TCM ECC	
	5.3	Cache ECC	
	5.4	Cache parity	
	5.5	TCM external error	
	5.6	L2 AMBA bus diagnostics	
	5.7	Memory Protection Unit	
	5.8	Exceptions	
	5.9	Lock-step	
	5.10	Split/lock	
Chapter 6	Cort	ex-R5 Processor Assumptions of Use	
	6.1	About the assumptions of use	
	6.2	Assumptions of use for the system integrator	
	6.3	Assumptions of use for the system developer	6-123
Chapter 7	Cort	ex-R5 Processor Safety Analysis Results	
	7.1	About safety analysis results	
	7.2	Failure modes and effects analysis	
	7.3	Sample core implementation results	
	7.4	Dependent failures	
	7.5	Systematic faults	
	7.6	Security considerations	
Appendix A	ECC	Encoding Tables	
	A.1	Introduction	Appx-A-137
	A.2	64-bit ECC scheme	Аррх-А-138
	A.3	32-bit ECC scheme	Аррх-А-140
	A.4	3-bit ECC scheme	Аррх-А-141
Appendix B	Meas	sures for Systematic Fault Avoidance	
	B.1	Systematic fault avoidance measures	Аррх-В-143
Appendix C	Sugg	gested Initialization Code for Lock-Step Operation	
	C.1	Suggested initialization code for lock-step operation	Appx-C-149
Appendix D	Revi	sions	
	D.1	Revisions	Appx-D-152

Cortex[®]-R5 Safety Manual

- Safety lifecycle description
- Overall and product specific safety management
 - Lifecycle aspects
 - V&V activities
 - Supporting processes
- Functional safety audits and assessments
 - Description of planned and completed activities
 - Summary of findings

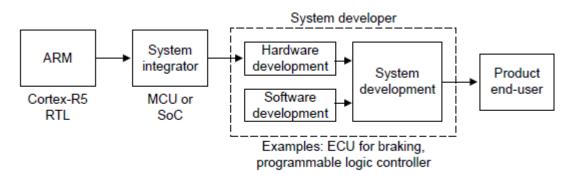
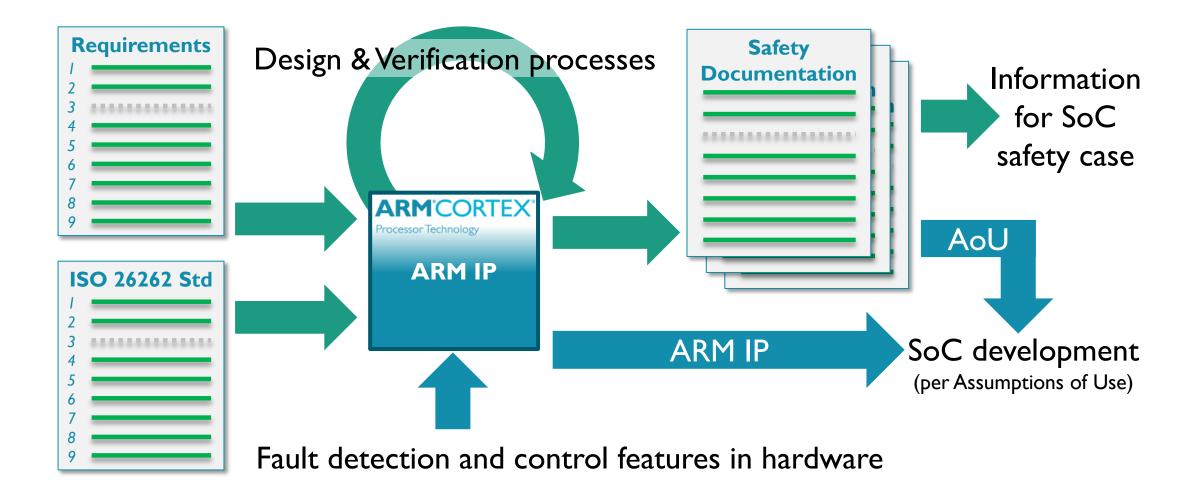


Figure 1-1 Allocation of roles and responsibilities

Cortex[®]-R5 FMEA Report

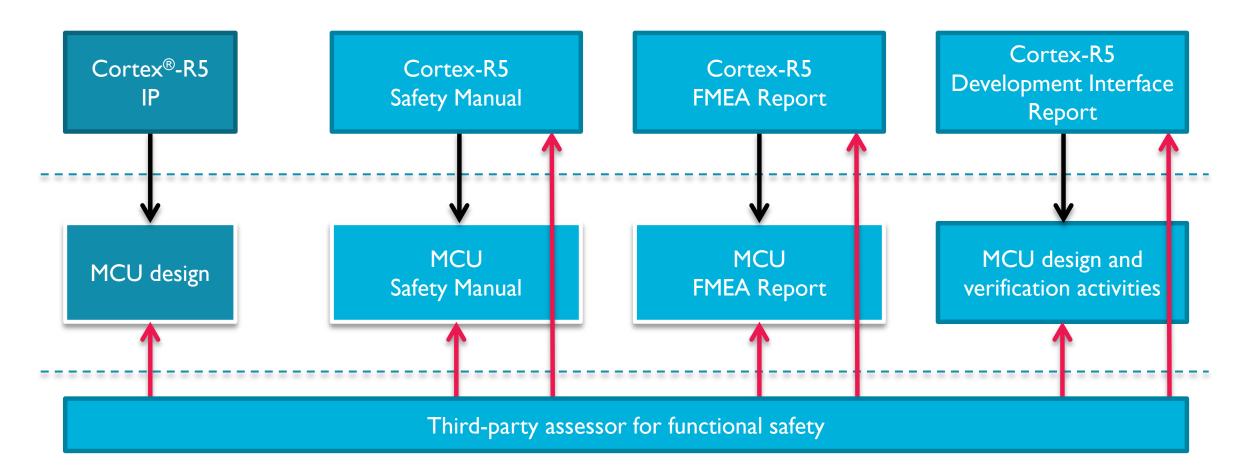
- General structure
 - Description of contents
 - ARM IP partitioning for safety analysis
 - Summary results of safety-related metrics
 - Example quantitative FMEA analysis
- Designed for usability
 - Standard Excel workbook
 - Fully modifiable / customizable by licensee
 - No macros required
- Complemented with an application note
 - Detailed description of analysis method

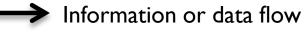
Component level	Block level	Sub-block level (end point)	Safety Relev ant	Detailed faul	
	Cortex R5 CPU0		1	Permanent fault caus wrong instruction loa opcode feeding the p	Symbol
CPU	(Master) Processor Core	Core Prefetch Unit	1	Transient fault causir wrong instruction loa opcode feeding the pr	$\lambda \left(\lambda_{\text{SR}} + \lambda_{\text{NSR}} \right)$
CPU	Cortex R5 CPU0 (Master)	Core Prefetch Unit	1	Permanent fault in th taken/not-taken decis	$\lambda_{ m SR}$ $\lambda_{ m NSR}$
	Processor Core		1	Transient fault in the taken/not-taken decis	λs
		Residual a	and singl	e point faults	$\lambda_{RF} + \lambda_{SPF}$
		Multiple ₁	point fau	lts	λ_{MPF}
Latent multiple point faults λ		λ_{MPFL}			
		Architect	urally sat	fe faults (by F _{sa}	$_{fe}$) λ_{s-ARCH}
	1	ransient fau	lts		
		Overall failu	ire rate:		$\lambda (\lambda_{op} + \lambda_{app})$



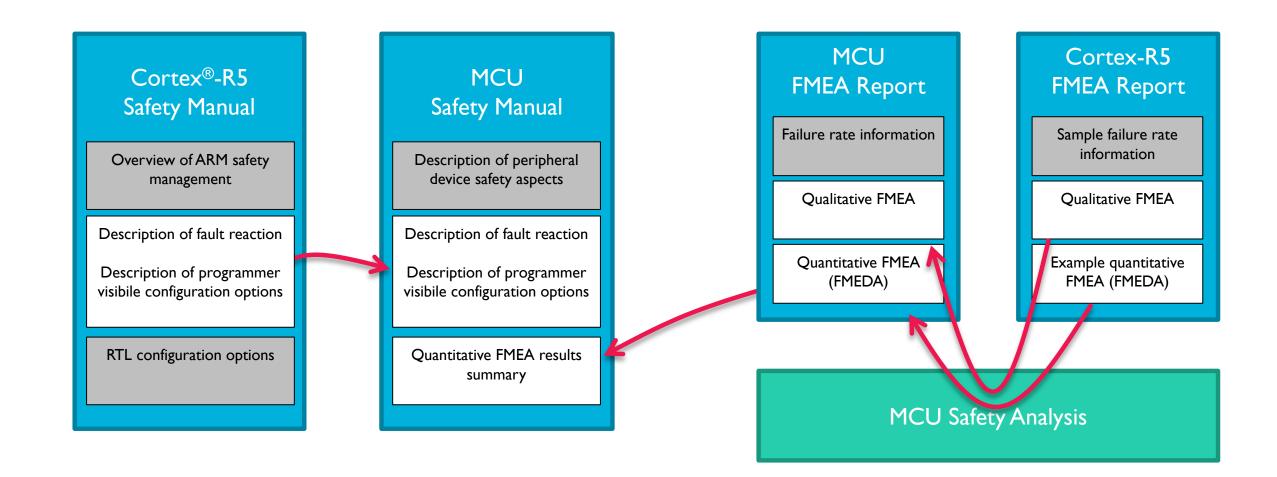
Development Interface Report – Contents

	Pref	ace	
		About this book	7
		Feedback	10
Chapter 1	Intro	oduction	
	1.1	About this book	1-12
	1.2	Purpose	1-13
	1.3	Role of ARM IP in a safety context	
	1.4	Assignment of roles and responsibilities	1-15
	1.5	Intended use of the Development Interface Report	1-16
Chapter 2	Dev	elopment Interface for the ARM [®] Cortex [®] -R5 Processor	
	2.1	Communication	2-18
	2.2	Safety management activities	
	2.3	Technical aspects	
	2.4	Supporting documentation and deliverables	2-21
Appendix A	Sum	nmary of the Processes and Activities	
	A.1	Summary of the processes and activities	Аррх-А-23
Appendix B	Info	rmation related to work products defined in ISO 26262:2	011
	B.1	Information related to work products defined in ISO 26262:2011	Аррх-В-27
Appendix C	Revi	sions	
	C.1	Revisions	Аррх-С-38



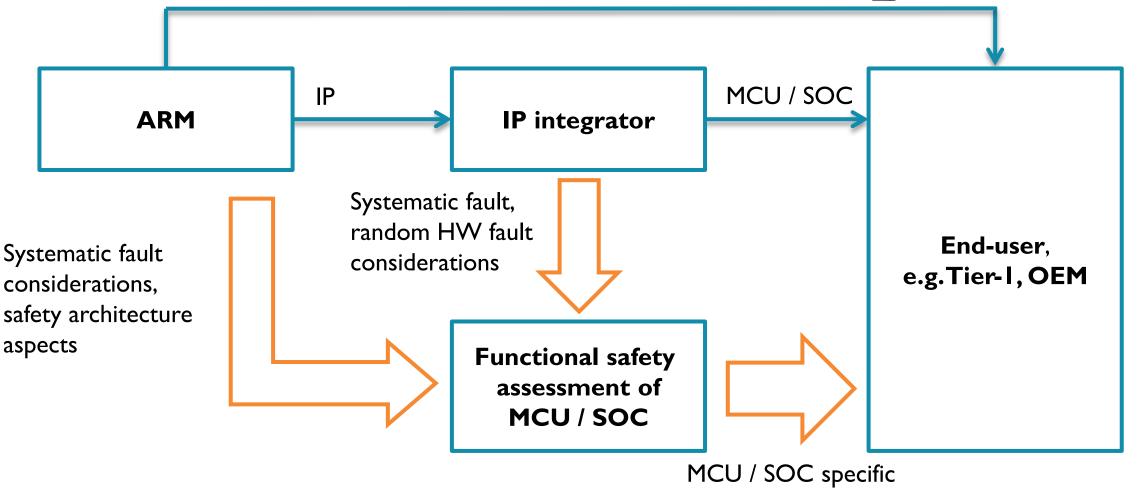

Safety Documentation Information Flow

Use Case Example: Support Third-party Assessment of an MCU



Access for audit and assessment purposes

Use Case Example: MCU / SoC Safety Documentation



Functional Safety for Integrated Designs

ARM Compiler Qualification Kit and toolchain certificate

safety documentation

Case: Ecosystem Partner Support from Yogitech

- Yogitech is a provider of services and solutions to silicon vendors and system integrators to help them meet their functional safety challenges
- Currently supports a number of ARM processor designs
 - Hardware solutions
 - Software solutions

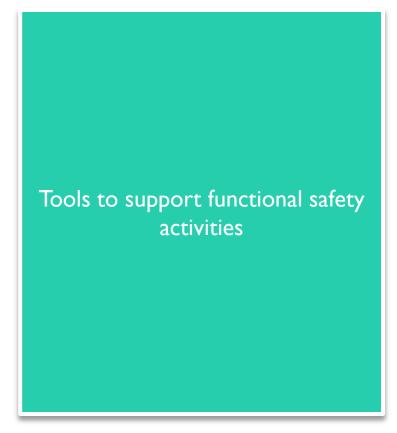
YOGITECH offer for ARM cores

- fRCPU (available for Cortex-M3) (autRobust
 - optimized tightly coupled fault supervisor for low-cost safety concepts, implementing ASILD "asymmetric redundancy" (ISO 26262-5 D.2.3.6).
- fault Robust • fRSmartComp (available for Cortex-R4F, R5)
 - enhanced dual-core lock-step for fail operational safety concepts, included in ISO 26262 as "2-way voting" (ISO 19451 PAS).
- fRSTL (available for Cortex-M0, M0+, M3, M4 in development for A15, A9, A7 – in roadmap for A53, A57)

- Application Independent Software Test Library. Each Test Segment targets a specific function of the CPU. It provides pass/fail information and self-checking signatures (CRC). It may be interrupted at any time by the application SW.
- - Complete solution including fRSTL for Cortex-A, fRSmartWatchdog (a SW layer comparing fRSTL results and handling application redundancy) and fRSVC_multicore (a safety verification component that provides customers with the safety analysis and safety verification artifacts to combine fRSTL and fRSmartWatchdog with application redundancy to reach up to ASIL C for both permanent and transient faults).

ARM Compiler 5 Support for Functional Safety

- Compiler Safety Package for software development in safety markets
 - Industrial control, automotive, medical, transportation, military and others

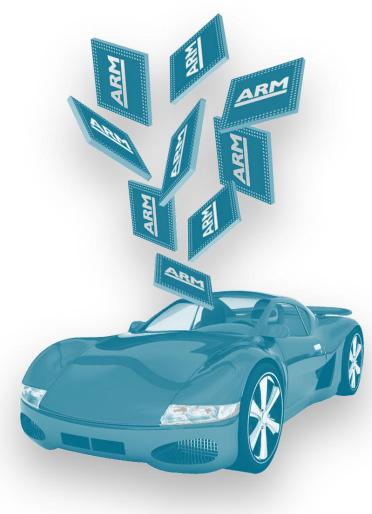

- Access to the Safety Package provided with DS-5 Ultimate and Keil[®] MDK Pro
 - Valid DS-5 or MDK support and maintenance entitlement enables extended maintenance
 - Compiler installation is an add-on to the standard product installation

Importance of ARM Ecosystem for Functional Safety

 Functional safety support required for all aspects of designs

Application software
Middleware
Operating systems
Hardware

 ...including design, verification and analysis tools



Conclusions

ARM is actively working on functional safety support

- Goal is to enable semiconductor manufacturers to develop SoC and MCU designs for safety applications
- This requires collaboration throughout the ecosystem
- Actively participating in ISO 26262 standardization activities
- We want to understand your needs
 - What is the best way for ARM to support your safety-related designs?
 - Your expectations for semiconductor suppliers' safety documentation and support?

THANKYOU!

For further information, please contact Lauri Ora <u>lauri.ora@arm.com</u> +44 (0) 7741 272 100

